Mathematics

Evaluate the following integrals:
$$\displaystyle \int { \cfrac { 1 }{ \sqrt { 16-6x-{ x }^{ 2 } }  }  } dx$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Evaluate $$\displaystyle\int{\sqrt{x+\sqrt{x^2+2}}dx}$$.
  • A. $$\displaystyle\frac{1}{3}{(x+\sqrt{x^2+2})}^{\tfrac{1}{2}}+2\frac{1}{\sqrt{x+\sqrt{x^2+2}}}+C$$
  • B. $$\displaystyle\frac{2}{3}{(x+\sqrt{x^2+2})}^{\tfrac{2}{3}}+2\frac{1}{\sqrt{x+\sqrt{x^2+2}}}+C$$
  • C. None of these
  • D. $$\displaystyle\frac{1}{3}{(x+\sqrt{x^2+2})}^{\tfrac{3}{2}}-2\frac{1}{\sqrt{x+\sqrt{x^2+2}}}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int x^{3}[\frac{1-\sin(4\log x)}{1-cos(4\log x)}]dx=$$
  • A. $$x^{4}$$ cot $$(2 \log x)+c$$
  • B. $$\displaystyle e^{4x}\frac{1}{1-cos(4\log x)}+c$$
  • C. $$\displaystyle \frac{x^4}{4}cot(2logx)+c$$
  • D. $$\displaystyle \frac{-x^{4}}{4}cot(2\log x)+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle \int \dfrac {dx}{\sin x. \sin (x + a)}$$ is equal to
  • A. $$cosec \, a \,  ln \left |\dfrac {\sin (x + a)}{\sin x}\right | + C$$
  • B. $$cosec \, a \,  ln \left |\dfrac {\sin (x + a)}{\sec x}\right | + C$$
  • C. $$cosec \, a \,  ln \left |\dfrac {\sec x}{\sec (x + a)}\right | + C$$
  • D. $$cosec \, a \,  ln \left |\dfrac {\sin x}{\sin (x + a)}\right | + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
If $$\displaystyle \frac{x^3-6x^2+10x-2}{x^2-5x+6}=f(x)+\frac{A}{x-2}+\frac{B}{x-3}$$, then $$f(x)=$$ 
(Note : $$A,B$$ are constants)
  • A. $$x+1$$
  • B. $$x$$
  • C. $$x+2$$
  • D. $$x-1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer