Mathematics

Evaluate the following integrals :
$$\displaystyle\int_{0}^{\pi/2}\dfrac{x\sin x\cos x}{\sin^{4}x+\cos^{4}x}\ dx$$


SOLUTION
We have, 
$$I=\displaystyle\int_{0}^{\pi/2}\dfrac{x\sin x\cos x}{\sin^{4}x+\cos^{4}x}\ dx$$ .....(i)

$$\Rightarrow I=\displaystyle\int_{0}^{\pi/2}\dfrac{\left(\dfrac{\pi}{2}-x\right)\cos x\sin x}{\cos^{4}x+\sin^{4}x}dx$$ ........(ii)

Adding $$(i)$$ and $$(ii)$$ , we get

$$2I=\dfrac{\pi}{2}\displaystyle\int_{0}^{\pi/2}\dfrac{\sin x\cos x}{\cos^{4}x+\sin^{4}x}dx$$

$$\Rightarrow 2I=\dfrac{\pi}{4}\displaystyle\int_{0}^{1}\dfrac{1}{(1-t^{2})+t^{2}}dt$$, where $$t=\sin^{2}x$$

$$2I=\dfrac{\pi}{8}\dfrac{\pi}{8}\displaystyle\int_{0}^{1}\dfrac{1}{\left(t-\dfrac{1}{2}\right)^{2}+\left(\dfrac{1}{2}\right)^{2}}dt=\dfrac{\pi}{8}\times 2\left[\tan^{-1} (2t-1)\right]_{0}^{1}$$

$$\Rightarrow I=\dfrac{\pi}{8}\left(\dfrac{\pi}{4}+\dfrac{\pi}{4}\right)=\dfrac{\pi^{2}}{16}$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$b > a,$$ and $$\displaystyle  I = \int _{a}^{b} \sqrt{\frac{ x-a}{b-x} }dx,$$ then $$I$$ equals
  • A. $$\pi (b -a)$$
  • B. $$\pi/2 $$
  • C. $$ 2\pi (b-a)$$
  • D. $$ \displaystyle \frac{\pi}{2} (b -a)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\displaystyle \int e^{\tan ^{-1}x}(1+x+x^{2})  d(\cot ^{-1}x)$$ is equal to
  • A. $$\displaystyle -e ^{\displaystyle \tan ^{-1}x}+c$$
  • B. $$\displaystyle e ^{\displaystyle \tan ^{-1}x}+c$$
  • C. $$\displaystyle xe ^{\displaystyle \tan ^{-1}x}+c$$
  • D. $$\displaystyle -xe ^{\displaystyle \tan ^{-1}x}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int ( 1+3x+3x^2+4x^3+........)dx (|x| <1)$$-
  • A. $$(1+x)^{-1}+c$$
  • B. $$(1+x)^{-2}+c$$
  • C. None of these
  • D. $$(1-x)^{-1}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle\int^{\pi}_{-\pi}x^3\cos^3xdx=?$$
  • A. $$\pi$$
  • B. $$\dfrac{\pi}{4}$$
  • C. $$2\pi$$
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\int {\dfrac {\cos 2x}{\sin x}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer