Mathematics

Evaluate the following integrals :
$$\displaystyle\int_{0}^{\pi} x\ dx$$


SOLUTION

$$\displaystyle\int_{0}^{\pi} x\ dx$$ 

Using $$\displaystyle\int{{x}^{n}dx}=\dfrac{{x}^{n+1}}{n+1}+c$$, we get

$$\Rightarrow \left[\dfrac {x^2}2\right]_0^\pi$$ 

$$\Rightarrow \dfrac {\pi^2}2$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Evaluate: $$\displaystyle\int \dfrac{1-x^2}{x(1-2x)}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
Solve: $$\displaystyle \int \dfrac{\sin 2x}{\sin \left(x - \dfrac{\pi}{4}\right) .\sin \left(x + \dfrac{\pi}{4}\right)} dx$$
  • A. $$\log\left |\sin^2 x + \dfrac{1}{2}\right|$$
  • B. $$\log\left |\sin x - \dfrac{1}{2}\right|$$
  • C. $$\log\left |\sin^2 x + \dfrac{1}{\sqrt{2}}\right|$$
  • D. $$\log\left |\sin^2 x - \dfrac{1}{2}\right|$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
Evaluate $$\displaystyle\int\limits_0^\pi  {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} $$
  • A. $$\dfrac{3\pi}{4}$$
  • B. $$\dfrac{\pi}{4}$$
  • C. $$\dfrac{5\pi}{4}$$
  • D. $$-\dfrac{\pi}{4}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate $$\int { \dfrac { { x }^{ 2 } }{ \sqrt { { x }^{ 6 }+{ a }^{ 6 } }  } dx }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
Evaluate $$\displaystyle\int{\frac{dx}{\sqrt{(x-a)(b-x)}}}$$.
  • A. $$\displaystyle I=2\cos^{-1}{\sqrt{\frac{x-a}{(b-a)}}}+C$$
  • B. $$\displaystyle I=\sin^{-1}{\sqrt{\frac{x-a}{(b-a)}}}+C$$
  • C. $$\displaystyle I=2\sin^{-1}{\sqrt{\frac{x-b}{(a-b)}}}+C$$
  • D. $$\displaystyle I=2\sin^{-1}{\sqrt{\frac{x-a}{(b-a)}}}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer