Mathematics

Evaluate the following integral:
$$\int { \log _{ x }{ x }  } dx$$


SOLUTION
Given $$\displaystyle\int{\log_{x}{x}dx}$$

$$=\displaystyle\int{dx}$$ since $$\log_{x}{x}=1$$

$$=x+c$$ 
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\displaystyle \int \frac{x^3dx}{\sqrt{1\, +\, x^2}}$$ is equal to
  • A. $$\displaystyle \frac{1}{3}\, \sqrt{1\, +\, x^2}\, (2\, +\, x^2)\, +\, c$$
  • B. $$\displaystyle \frac{1}{3}\, \sqrt{1\, +\, x^2}\, (x^2\, -\, 1)\, +\, c$$
  • C. $$\displaystyle \frac{1}{3}\, (1\, +\, x^2)^{3/2}\, +\, c$$
  • D. $$\displaystyle \frac{1}{3}\, \sqrt{1\, +\, x^2}\, (x^2\, -\, 2)\, +\, c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 One Word Medium
Evaluate:$$ \displaystyle \int \frac{dx}{\sqrt{8-4x-2x^{2}}} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate :
$$\displaystyle\int{\dfrac { \left( logx \right) ^{ 2 } }{ x }dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$ \displaystyle \int \frac{e^{x}(x+1)}{cos^{2}(xe^{x})}dx=$$

  • A. $$sec (xe^x) tan (xe^x) + C$$
  • B. $$ -tan (xe^x) + C$$
  • C. None of these
  • D. $$tan (xe^x) + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer