Mathematics

# Evaluate the following integral$\int { \cfrac { \cos { x } }{ \cos { \left( x-a \right) } } } dx\quad$

##### SOLUTION
$I=\displaystyle\int{\dfrac{\cos{x}}{\cos{\left(x-a\right)}}dx}$

$I=\displaystyle\int{\dfrac{\cos{\left(x-a+a\right)}}{\cos{\left(x-a\right)}}dx}$

$I=\displaystyle\int{\dfrac{\cos{\left(x-a\right)}\cos{a}-\sin{\left(x-a\right)}\sin{a}}{\cos{\left(x-a\right)}}dx}$

$I=\displaystyle\int{\dfrac{\cos{\left(x-a\right)}\cos{a}}{\cos{\left(x-a\right)}}dx}-\displaystyle\int{\dfrac{\sin{\left(x-a\right)}\sin{a}}{\cos{\left(x-a\right)}}dx}$

$I=\cos{a}\displaystyle\int{dx}-\sin{a}\displaystyle\int{\dfrac{\sin{\left(x-a\right)}}{\cos{\left(x-a\right)}}dx}$

$I=x\cos{a}-\sin{a}\log{\left|\sec{\left(x-a\right)}\right|}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105

#### Realted Questions

Q1 Single Correct Hard
$\displaystyle\int_0^\infty{f(x^n+x^{-n})\ln{x}\frac{dx}{1+x^2}}$ is equal to
• A. $-1$
• B. $\infty$
• C. None of these
• D. $0$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate : $\int {\frac{1}{{\left( {\sqrt x + x} \right)}}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Obtain $\displaystyle\int _{ 0 }^{ 1 }{ { e }^{ x } } \,dx$ as the limit of sum.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The value of the integral $\displaystyle \int\limits_0^1 {\dfrac{{{x^3}}}{{1 + {x^8}}}\,\,dx}$ is
• A. $\frac{\pi }{{4}}$
• B. $\frac{\pi }{{8}}$
• C. none of these
• D. $\frac{\pi }{{16}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\displaystyle\int\limits_{0}^{2a}\dfrac{f(x)}{f(x)+f(2a-x)}dx=$
• A. $2a$
• B. $0$
• C. none of these
• D. $a$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020