Mathematics

# Evaluate the following integral:$\displaystyle\int { \cfrac { \cos { x } }{ \cos { 3x } } } dx$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Evaluate:
$\int { \sqrt { 4-{ x }^{ 2 } } } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle \int_{1}^{2} \dfrac {-1}{x^2}\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int _{ 0 }^{ 2\pi }{ \dfrac { x\sin ^{ 2n }{ x } }{ \sin ^{ 2n }{ x } +\cos ^{ 2n }{ x } } } dx$.
• A. $2{\pi}^2$
• B. $4{\pi}^2$
• C. $8{\pi}^2$
• D. ${\pi}^2$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle\int^{2+\sqrt{3}}_{2-\sqrt{3}}\dfrac{xdx}{(1+x)(1+x^2)}=?$
• A. $\dfrac{\pi}{6}$
• B. $\dfrac{\pi}{12}$
• C. $\dfrac{\pi}{24}$
• D. $\dfrac{\pi}{4}$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$