Mathematics

Evaluate the following integral:
$$\displaystyle\int { \cfrac { 1 }{ \cos { 2x } +3\sin ^{ 2 }{ x }  }  } dx$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Solve:-
$$\int\limits_0^1 {\frac{{dx}}{{{{({x^2} + 1)}^{3/2}}}}} $$
  • A. $$1$$
  • B. $$\sqrt 2 $$
  • C. $$\dfrac{1}{\sqrt 2}$$
  • D. $$1/2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Resolve into partial fraction $$\displaystyle \frac{x^3-3x-2}{(x^2+x+1)(x+1)^2}$$
  • A. $$\displaystyle \frac{3x-1}{x^2+x+1}+\frac{2}{(x+1)^2}+\frac{3}{(x+1)}$$
  • B. $$\displaystyle \frac{3x}{x^2+x+1}+\frac{2}{(x+1)^2}-\frac{3}{(x+1)}$$
  • C. $$\displaystyle \frac{x-1}{x^2+x+1}+\frac{2}{(x+1)^2}-\frac{3}{(x+1)}$$
  • D. $$\displaystyle \frac{3x-1}{x^2+x+1}+\frac{2}{(x+1)^2}-\frac{3}{(x+1)}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \overset{2\pi}{\underset{0}{\int}} x \,log \left(\dfrac{3 + \cos x}{3 - \cos x}\right)dx$$
  • A. $$\dfrac{\pi}{12} \,log \,3$$
  • B. $$\dfrac{\pi}{3} \,log \,3$$
  • C. $$0$$
  • D. $$\dfrac{\pi}{2} \,log \,3$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
The value of I(n)=$$\displaystyle \int_{0}^{\pi}\dfrac{sin^2n\theta}{sin^2\theta}d\theta  $$ is $$(\forall n \in N)$$
  • A. $$\dfrac{n\pi}{2}$$
  • B. $$\dfrac{n\pi}{4}$$
  • C. None of these
  • D. $$n\pi$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$\displaystyle I_{1}=\int_{0}^{1}(1-x^{2})^{1/3} dx$$  &  $$\displaystyle I_{2}=\int_{0}^{1}(1-x^{3})^{1/2} dx$$

On the basis of above information, answer the following questions: 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer