Mathematics

# Evaluate the following integral:$\displaystyle\int_{0}^{\pi} x\ dx$

##### SOLUTION

Given $\displaystyle\int_{0}^{\pi} x\ dx$

$=\left.\dfrac {x^2}2\right|_0^\pi$     [$\because\int x^n=\dfrac{x^{n+1}}{n+1}$]

$=\dfrac {\pi^2}2$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
Let $\displaystyle f\left ( x \right )=\int_{0}^{x}t\sin tdt$, then $\displaystyle f\left ( x \right )$ is equal to
• A. $\displaystyle \cos x+x\sin x.$
• B. $\displaystyle x \cos x.$
• C. None of these
• D. $\sin x-x\cos x$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int \dfrac{1}{\sqrt{x}} \tan^4 \, \sqrt{x} \, \sec^2 \, \sqrt{x} \, dx =$
• A. $2 \, \tan^5 \, \sqrt{x} + c$
• B. $\dfrac{1}{5} \tan^5 \, \sqrt{x} + c$
• C. None of these
• D. $\dfrac{2}{5} \tan^5 \, \sqrt{x} + c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\int \frac{xdx}{\sqrt{1+x^{2}+\sqrt{(1+x^{2})^{3}}}}$
• A. $\frac{-2}{3(1+\sqrt{1+x^{2}})^{1/2}}+C$
• B. $2(1+\sqrt{1+x^{2}})+C$
• C. $2\sqrt{1+\sqrt{1+x^{2}}}+C$
• D. $\frac{1}{2}ln(1+\sqrt{1+x^{2}})+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate :
$\int x^x(1+\log x) \ dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 TRUE/FALSE Medium
If $f,g,h$ be continuous functions on $[0,a]$ such that $f(a-x)=-f(x),g(a-x)=g(x)$ and $3h(x)-4h(a-x)=5$ then  $\displaystyle \int_0^a f(x)g(x)h(x)dx=0$
• A. False
• B. True

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020