Mathematics

# Evaluate the following integral:$\displaystyle \int { \cfrac { { x }^{ 3 }-3{ x }^{ 2 }+5x-7+{ x }^{ 2 }{ a }^{ x } }{ 2{ x }^{ 2 } } } dx$

##### SOLUTION
$\displaystyle\int{\dfrac{{x}^{3}-3{x}^{2}+5x-7+{x}^{2}{a}^{x}}{2{x}^{2}}dx}$

$=\dfrac{1}{2}\displaystyle\int{\dfrac{{x}^{3}-3{x}^{2}+5x-7+{x}^{2}{a}^{x}}{{x}^{2}}dx}$

$=\dfrac{1}{2}\displaystyle\int{x\,dx}-\dfrac{3}{2}\displaystyle\int{dx}+\dfrac{5}{2}\displaystyle\int{\dfrac{dx}{x}}-\dfrac{7}{2}\displaystyle\int{\dfrac{dx}{{x}^{2}}}+\dfrac{1}{2}\displaystyle\int{{a}^{x}\,dx}$

$=\dfrac{{x}^{2}}{4}-\dfrac{3x}{2}+\dfrac{5}{2}\log{\left|x\right|}+\dfrac{7}{2x}+\dfrac{{a}^{x}}{2\log{a}}+c$ where $c$ is the constant of integration.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
Evaluate the integral, $\int _{ 0 }^{ 1 }{ \cos { \left( 2\cot ^{ -1 }{ \sqrt { \dfrac { 1-x }{ 1+x } } } \right) } } dx=$
• A. $1/2$
• B. $0$
• C. $1$
• D. $-1/2$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
If $I_{n} = \int_{0}^{\pi/4}\tan^{n} xdx$ then $\displaystyle \lim_{n\rightarrow \infty} n(I_{n} + I_{n - 2}) =$
• A. $1/2$
• B. $\infty$
• C. $0$
• D. $1$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int _{ 0 }^{ 1 }{ \tan ^{ -1 }{ \left( \dfrac { x }{ \sqrt { 1-{ x }^{ 2 } } } \right) } dx }$
• A. $\dfrac{\pi}{2}$
• B. $0$
• C. None of these
• D. $\dfrac{\pi}{2}-1$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate: $\int\limits_0^{\pi /2} {\log } \left( {\tan \;x} \right)\;dx$

$\int(2x^2-3 \, sin x+5 \sqrt{x})dx$