Mathematics

# Evaluate the following integral:$\displaystyle \int { \cfrac { 1 }{ \sin ^{ 2 }{ x } +\sin { 2x } } } dx\quad$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Find the integral of    $\displaystyle \int (2x-3\cos x+e^x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate the following integrals:
$\int { \cfrac { x }{ \sqrt { { x }^{ 2 }+6x+10 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate : $\displaystyle \int { { e }^{ x }\left[ \cfrac { 1 }{ 1-x } +\cfrac { 1 }{ { \left( 1-x \right) }^{ 2 } } \right] } dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
If $f(x) = x - x^2 +1$ & $g(x)=max\left \{ f(t) ;0\leq t< x \right \}$, then $\overset {1}{\underset { 0 }{ \int } } g (x) dx = ?$
• A. $\dfrac{7}{6}$
• B. $\dfrac{5}{4}$
• C. none of these
• D. $\dfrac{29}{24}$

$\displaystyle\int\limits_{a}^{b}f(x)\ dx=b^3-a^3$, then find $f(x)$.