Mathematics

Evaluate the following integral:
$$\displaystyle \int_{0}^{3}x^2 \ dx$$ 


SOLUTION
$$\displaystyle \int_{0}^{3}x^2 \ dx$$ 

Using $$\displaystyle\int{{x}^{n}dx}=\dfrac{{x}^{n+1}}{n+1}+C$$, we get

$$=\left[\dfrac {x^3}3\right]_0^3 $$

$$=\dfrac {3^3}3-0$$

$$=9$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Find $$\int { \cfrac { \sqrt { x }  }{ \sqrt { { a }^{ 3 }-{ x }^{ 3 } }  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate: $$\displaystyle \int \cot x dx$$. 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int xe^{2x}(1+x)dx$$ equal to

  • A. $$\displaystyle \frac{xe^{x}}{2}+c$$
  • B. $$\displaystyle \frac{(e^{x})^{2}}{2}r$$
  • C. $$\displaystyle \frac{(1+x)^{2}}{2}+c$$
  • D. $$\displaystyle \frac{(xe^x)^2}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate: $$\displaystyle \int{\dfrac{(2x+3)dx}{x^2+3x+6}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int { \dfrac { dx }{ \sqrt { 9x+4{ x }^{ 2 } }  }  }$$ equals
  • A. $$\dfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( \dfrac { 8x-9 }{ 9 } \right) +C }$$
  • B. $$\dfrac { 1 }{ 3 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 8 } \right) +C }$$
  • C. $$\dfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 9 } \right) +C }$$
  • D. $$\dfrac { 1 }{ 9 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 8 } \right) +C }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer