Mathematics

# Evaluate the following integral:$\displaystyle \int_{0}^{3}x^2 \ dx$

##### SOLUTION
$\displaystyle \int_{0}^{3}x^2 \ dx$

Using $\displaystyle\int{{x}^{n}dx}=\dfrac{{x}^{n+1}}{n+1}+C$, we get

$=\left[\dfrac {x^3}3\right]_0^3$

$=\dfrac {3^3}3-0$

$=9$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105

#### Realted Questions

Q1 Subjective Medium
Find $\int { \cfrac { \sqrt { x } }{ \sqrt { { a }^{ 3 }-{ x }^{ 3 } } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate: $\displaystyle \int \cot x dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int xe^{2x}(1+x)dx$ equal to

• A. $\displaystyle \frac{xe^{x}}{2}+c$
• B. $\displaystyle \frac{(e^{x})^{2}}{2}r$
• C. $\displaystyle \frac{(1+x)^{2}}{2}+c$
• D. $\displaystyle \frac{(xe^x)^2}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate: $\displaystyle \int{\dfrac{(2x+3)dx}{x^2+3x+6}}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\int { \dfrac { dx }{ \sqrt { 9x+4{ x }^{ 2 } } } }$ equals
• A. $\dfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( \dfrac { 8x-9 }{ 9 } \right) +C }$
• B. $\dfrac { 1 }{ 3 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 8 } \right) +C }$
• C. $\dfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 9 } \right) +C }$
• D. $\dfrac { 1 }{ 9 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 8 } \right) +C }$