Mathematics

Evaluate the following integral as limit of sum:$\displaystyle \int_{0}^{2}e^x\ dx$

SOLUTION
We know that
$\displaystyle \int_a^b f(x) dx=\displaystyle \lim_{h\to 0}h [f(a) +f(a+h)+...+f(a+(h-1) h)]$, where $h=\dfrac {b-a}{2}$

Here $a=0, b=2, f(x)=e^x$ and $h=\dfrac {2-0}{n}$

$\therefore \ \displaystyle \int_{0}^2 e^x \ dx =\displaystyle \lim_{h\to 0}h [f(0) +f(h) +f(2h) +...+f((n-1) )h]$

$=\displaystyle \lim_{h\to 0}h[e^0 +e^h +e^{2h} +....+ e^{(n-1)h}]$

$=\displaystyle \lim_{h\to 0} h \left [\dfrac {(e^h)^n -1}{e^h -1}\right] =\displaystyle \lim_{h\to 0} \dfrac {e^2 -1}{\left (\dfrac {e^2 -1}{h}\right)}=\dfrac {e^2 -1}{1} =e^x -1$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Subjective Medium
Evaluate :  $\int \frac { \sec x d x } { \log ( \sec x + \tan x ) }$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle \int \dfrac {1-x}{1+x}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle\int { \dfrac { { x }^{ 5 } }{ \sqrt { 1+{ x }^{ 3 } } } dx }$ is equal to
• A. $\dfrac { 2 }{ 9 } \sqrt { { x }^{ 3 }-9 } \left( 1+{ x }^{ 2 } \right) +C$
• B. $\dfrac { 2 }{ 9 } \sqrt { 1+{ x }^{ 3 } } +C$
• C. $\dfrac { 2 }{ 9 } \sqrt { 1+{ x }^{ 3 } } \left( { x }^{ 3 }-2 \right) +C$
• D. $\dfrac { 2 }{ 9 } \sqrt { 1+{ x }^{ 2 } } \left( { x }^{ 3 }+9 \right) +C$
• E. $\dfrac { 2 }{ 9 } \sqrt { 1+{ x }^{ 2 } } \left( { x }^{ 3 }-9 \right) +C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Let $F(x)=f(x)+f\left ( \dfrac{1}{x} \right )$, where $f(x)=\int_{l}^{x}\dfrac{logt}{l+t}dt$. Then $F(e)$ equals
• A.
• B. 1
• C. 2
• D. $\dfrac{1}{2}$

$\displaystyle \int_1^2(4x^3-5x^2+6x+9)dx$