Mathematics

# Evaluate the following : $\displaystyle\int \dfrac{1}{4x^{2}-3}.dx$

##### SOLUTION
$I=\displaystyle\int \dfrac{1}{4x^{2}-3}.dx$
$=\dfrac{1}{4}\displaystyle\int \dfrac{1}{x^{2}-\dfrac{3}{4}}.dx$
$=\dfrac{1}{4}\displaystyle\int \dfrac{1}{x^{2}-\left(\dfrac{\sqrt{3}}{2}\right)^{2}}.dx$
$=\dfrac{1}{4}\dfrac{1}{2\left(\dfrac{\sqrt{3}}{2}\right)}\log \left|\dfrac{x-\dfrac{\sqrt{3}}{2}}{x+\dfrac{\sqrt{3}}{2}}\right|+c$
$=\dfrac{1}{4\sqrt{3}}\log \left|\dfrac{2x-\sqrt{3}}{2x+\sqrt{3}}\right|+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105

#### Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$\displaystyle \int { \cfrac { { x }^{ 3 }-3{ x }^{ 2 }+5x-7+{ x }^{ 2 }{ a }^{ x } }{ 2{ x }^{ 2 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve:
$\int {\sqrt {{(x- 2)} {(x - 2)} } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Solve $\int _{ }^{ }{ { x }^{ 2 }{ e }^{ { x }^{ 3 } } } dx$ equals
• A. $\cfrac { 1 }{ 3 } { e }^{ { x }^{ 2 } }+C$
• B. $\cfrac { 1 }{ 2 } { e }^{ { x }^{ 3 } }+C$
• C. $\cfrac { 1 }{ 2 } { e }^{ { x }^{ 2 } }+C$
• D. $\cfrac { 1 }{ 3 } { e }^{ { x }^{ 3 } }+C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The equation $\displaystyle\int^{\pi/4}_{-\pi/4}\left(a|\sin x|+\dfrac{b\sin x}{1+\cos x}+c\right)dx=0$, where a, b, c are constants, gives a relation between.
• A. a, b and c
• B. a and b
• C. b and c
• D. a and c

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$