Mathematics

# Evaluate the following: $\displaystyle\int \dfrac { 2 x + 7 } { ( x - 4 ) ^ { 2 } } d x$

##### SOLUTION
$I=\displaystyle\int\dfrac{2x+7}{(x-4)^2}dx$

$I=\displaystyle\int\dfrac{2x-8+15}{(x-4)^2}dx=\displaystyle\int\dfrac{2x-8}{(x-4)^2}dx+\displaystyle\int\dfrac{15}{(x-4)^2}dx$

$I=\displaystyle\int\dfrac{2(x-4)}{(x-4)^2}dx+15\displaystyle\int\dfrac{1}{(x-4)^2}dx$

Let $x-4=t\Rightarrow dx=dt$

$I=\displaystyle2\int \dfrac{dx}{t}+15\int \dfrac{1}{t^2}dt$

$I=2\log(t)+15\dfrac{t^{-1}}{-1}$

$I=2log(t)-\dfrac{15}{t}$

$I=2log (x-4)-\dfrac{15}{(x-4)}+c$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
$\int \sqrt{\dfrac{1-\cos x}{\cos \alpha -\cos x}}dx$ where $0< \alpha < x< \pi$ equals
• A. $2\ln \left ( \cos \dfrac{\alpha }{2}-\cos \dfrac{x}{2} \right )+c$
• B. $\cos^{-1}\left ( \dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{\alpha }{2}} \right )+c$
• C. $2\sqrt{2}\ln \left ( \cos \dfrac{\alpha }{2}-\cos \dfrac{x}{2} \right )+c$
• D. $-2\sin^{-1}\left ( \dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{\alpha }{2}} \right )+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integration w.r.t. $x$
$\int \dfrac {1}{(4x+5)^{2}+1}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 One Word Hard
$\displaystyle \int \frac{\sin x}{\sin 4x}dx=-\frac{1}{k}\log \frac{1+\sin x}{1-\sin x}+\frac{1}{4\sqrt{2}}\log \frac{1+\sqrt{2}\sin x}{1-\sqrt{2}\sin x}$. Find the value of $k$.

1 Verified Answer | Published on 17th 09, 2020

Q4 One Word Hard
If $I= \displaystyle \int_{0}^{\pi }\displaystyle \frac{x^{2}\sin ^{2}x\cos ^{4}x}{x^{2}-3\pi x+3x^{2}} dx$ then the value of $\displaystyle \frac{32}{\pi ^{2}} I+ 298$ is equal

Let $n \space\epsilon \space N$ & the A.M., G.M., H.M. & the root mean square of $n$ numbers $2n+1, 2n+2, ...,$ up to $n^{th}$ number are $A_{n}$, $G_{n}$, $H_{n}$ and $R_{n}$ respectively.