Mathematics

Evaluate the following :
$$\displaystyle \int{\left(\dfrac{\tfrac{x}{x+1}-ln(x+1) }{x(ln(x+1)) }\right)}dx$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Evaluate $$\displaystyle\int{\frac{dx}{\sqrt{(x-a)(b-x)}}}$$.
  • A. $$\displaystyle I=2\cos^{-1}{\sqrt{\frac{x-a}{(b-a)}}}+C$$
  • B. $$\displaystyle I=\sin^{-1}{\sqrt{\frac{x-a}{(b-a)}}}+C$$
  • C. $$\displaystyle I=2\sin^{-1}{\sqrt{\frac{x-b}{(a-b)}}}+C$$
  • D. $$\displaystyle I=2\sin^{-1}{\sqrt{\frac{x-a}{(b-a)}}}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\int _{0}^{-\pi/2} \ln (\sin^{2}{\theta}+k^{2}\cos^{2}{\theta})d\theta$$ is equal to
  • A. $$\dfrac{\pi}{2} \ \ln ({k+1})$$
  • B. $${\pi} \ \ln ({k+1})$$
  • C. $$\dfrac{\pi}{2} \ \ln ({\dfrac{k+1}{2}})$$
  • D. $$\pi \ \ln ({\dfrac{k+1}{2}})$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
If $$\displaystyle\int { \cfrac { 1 }{ 5+4\sin { x }  }  } dx=A\tan ^{ -1 }{ \left( B\tan { \cfrac { x }{ 2 }  } +\cfrac { 4 }{ 3 }  \right)  } +C\quad $$, then
  • A. $$A=\cfrac { 1 }{ 3 } ,B=\cfrac { 2 }{ 3 } $$
  • B. $$A=-\cfrac { 2 }{ 3 } ,B=\cfrac { 5 }{ 3 } $$
  • C. $$A=\cfrac { 1 }{ 3 } ,B=-\cfrac { 5 }{ 3 } $$
  • D. $$A=\cfrac { 2 }{ 3 } ,B=\cfrac { 5 }{ 3 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate the integrals:
$$\displaystyle \int \dfrac{4x}{(2x^2+3)}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer