Mathematics

# Evaluate the following definite integral:$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$.

##### SOLUTION

Consider, $I=\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$

Let $\sin 2t=u$.

Then,

$d(\sin 2t)=du$

$\Rightarrow 2\cos 2t\ dt=du$

$\Rightarrow \cos 2t dt=\dfrac{1}{2}du$

Also,

$t=0\Rightarrow u=\sin 0=0$

$t=\dfrac{\pi}{4}$

$\Rightarrow u=\sin\dfrac{\pi}{2}=1$

$\therefore I=\dfrac{1}{2}\displaystyle\int_{0}^{1}u^{3}du$

$I=\dfrac{1}{8}\left[u^{4}\right]_{0}^{1}=\dfrac{1}{8}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Multiple Correct Medium
$\int\limits_0^\pi {{\rm{log(1 + }}\cos x)dx = }$
• A. $- \frac{\pi }{2}\log 2$
• B. $- \frac{\pi }{3}$
• C. $- \pi \log 2$
• D. $- 2\pi \log 2$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\int { \frac { { x }^{ 4 } }{ { x }^{ 2 }+1 } dx }$ is equal to
• A. $\dfrac {x^{3}}{3}+x+\tan^{-1}x+C$
• B. $\dfrac {x^{2}}{2}-x+\tan^{-1}x+C$
• C. $\dfrac {x^{3}}{3}-x-\tan^{-1}x+C$
• D. $\dfrac {x^{2}}{3}-x+\tan^{-1}x+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\int \dfrac{sin x+ sin 2x + sin 3x}{cos x+cos 2x+cos3x}dx$
• A. $sec2x+c$
• B. $tan2x+c$
• C. $None of these$
• D. $\dfrac{log(sec2x)}{2}+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate: $\displaystyle \int _ { 0 } ^ { \pi / 4 } \sec ^ { 7 } {\theta} \sin ^ { 3 } {\theta} {d \theta} =$
• A. $\dfrac { 1 } { 12 }$
• B. $\dfrac { 3 } { 12 }$
• C. $\dfrac { 7 } { 12 }$
• D. $\dfrac { 5 } { 12 }$

Let $n \space\epsilon \space N$ & the A.M., G.M., H.M. & the root mean square of $n$ numbers $2n+1, 2n+2, ...,$ up to $n^{th}$ number are $A_{n}$, $G_{n}$, $H_{n}$ and $R_{n}$ respectively.