Mathematics

Evaluate the following definite integral:

$$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$.


SOLUTION

Consider, $$I=\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$

Let $$\sin 2t=u$$. 

Then, 

$$d(\sin 2t)=du$$ 

$$\Rightarrow 2\cos 2t\ dt=du$$ 

$$\Rightarrow \cos 2t dt=\dfrac{1}{2}du$$

Also, 

$$t=0\Rightarrow u=\sin 0=0$$ 

$$t=\dfrac{\pi}{4}$$ 

$$\Rightarrow u=\sin\dfrac{\pi}{2}=1$$

$$\therefore I=\dfrac{1}{2}\displaystyle\int_{0}^{1}u^{3}du$$ 

$$I=\dfrac{1}{8}\left[u^{4}\right]_{0}^{1}=\dfrac{1}{8}$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Multiple Correct Medium
$$\int\limits_0^\pi  {{\rm{log(1 + }}\cos x)dx = } $$
  • A. $$ - \frac{\pi }{2}\log 2$$
  • B. $$ - \frac{\pi }{3}$$
  • C. $$ - \pi \log 2$$
  • D. $$ - 2\pi \log 2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\int { \frac { { x }^{ 4 } }{ { x }^{ 2 }+1 } dx }$$ is equal to
  • A. $$\dfrac {x^{3}}{3}+x+\tan^{-1}x+C$$
  • B. $$\dfrac {x^{2}}{2}-x+\tan^{-1}x+C$$
  • C. $$\dfrac {x^{3}}{3}-x-\tan^{-1}x+C$$
  • D. $$\dfrac {x^{2}}{3}-x+\tan^{-1}x+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int \dfrac{sin x+ sin 2x + sin 3x}{cos x+cos 2x+cos3x}dx$$
  • A. $$sec2x+c$$
  • B. $$tan2x+c$$
  • C. $$ None of these$$
  • D. $$\dfrac{log(sec2x)}{2}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Evaluate: $$\displaystyle \int _ { 0 } ^ { \pi / 4 } \sec ^ { 7 } {\theta} \sin ^ { 3 } {\theta} {d \theta} =$$
  • A. $$\dfrac { 1 } { 12 }$$
  • B. $$\dfrac { 3 } { 12 }$$
  • C. $$\dfrac { 7 } { 12 }$$
  • D. $$\dfrac { 5 } { 12 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$n \space\epsilon \space N$$ & the A.M., G.M., H.M. & the root mean square of $$n$$ numbers $$2n+1, 2n+2, ...,$$ up to $$n^{th}$$ number are $$A_{n}$$, $$G_{n}$$, $$H_{n}$$ and $$R_{n}$$ respectively. 
On the basis of above information answer the following questions

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer