Mathematics

# Evaluate the following definite integral:$\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$

##### SOLUTION

Consider, $I=\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$

Let $x+2=t^{2}$. Then , $dx=2t dt$

Also $x=0\Rightarrow t^{2}=2$

$\Rightarrow t=\sqrt{2}$

$x=2\Rightarrow t^{2}=4$

$\Rightarrow t=2$

$\therefore I=\displaystyle\int_{\sqrt{2}}^{2}(t^{2}-2)\sqrt{t^{2}}2t dt$

$=2\displaystyle\int_{\sqrt{2}}^{2}(t^{4}-2t^{2})dt$

$=2\left[\dfrac{t^{5}}{5}-\dfrac{2t^{3}}{3}\right]_{\sqrt{2}}^{2}$

$\Rightarrow I=2\left[\left(\dfrac{32}{5}-\dfrac{16}{3}\right)-\left(\dfrac{4\sqrt{2}}{5}-\dfrac{4\sqrt{2}}{3}\right)\right]$

$=2\left(\dfrac{16}{15}+\dfrac{8\sqrt{2}}{15}\right)$

$=\dfrac{32+16\sqrt{2}}{15}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Integrate with respect to $x$:
$\dfrac{1}{x^2 + 2x + 5}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $\displaystyle \sum^{4}_{i = 1}(sin^{-1}x_i + \cos^{-1} y_i) = 6\pi$, then $\displaystyle \int^{\displaystyle \sum^{4}_{i = 1}y_{i}}_{\displaystyle \sum^{4}_{i = 1}x_{i}} xln(1 + x^2) \left(\dfrac{e^x}{1 + e^{2x}}\right)dx$ is equal to:
• A. $e^4 + e^{-4}$
• B. $ln\left(\dfrac{17}{12}\right)$
• C. None of the these
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate: $\int_{0}^{\pi /2} e^{x} (\sin x - \cos x)dx.$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate :
$\displaystyle \int\limits_{0}^{2\pi} \cos^5x \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
Evaluate: $\displaystyle \int \frac{5x^{8}+7x^{6}}{\left ( x^{2}+1+2x^{7} \right )^{2}}dx$
• A. $\displaystyle \frac{2x^{7}}{2x^{7}+x^{2}+1}$
• B. $\displaystyle \frac{x^{6}}{2x^{7}+x^{2}+1}$
• C. $\displaystyle \frac{x^{14}}{2x^{7}+x^{2}+1}$
• D. $\displaystyle \frac{x^{7}}{2x^{7}+x^{2}+1}$