Mathematics

Evaluate the following definite integral:

$$\displaystyle \int _2^3 x^2+2x+5 dx$$


SOLUTION

Consider, $$I=\displaystyle \int _2^3 x^2+2x+5 dx$$

$$I=\left.\dfrac{x^3}3 +x^2+5x\right|_2^3$$ 

$$I=9+9+15-\dfrac 83-4-10$$ 

$$I=19-\dfrac 83=\dfrac {49}3$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\int { \cfrac { dx }{ \sqrt { { \left( x-3 \right)  }^{ 2 }-1 }  }  } =$$?
  • A. $$\log { \left| x+\sqrt { { x }^{ 2 }-6x+8 } \right| } +C$$
  • B. $$\log { \left| \left( x-3 \right) -\sqrt { { x }^{ 2 }-6x+8 } \right| } +C\quad $$
  • C. none of these
  • D. $$\log { \left| \left( x-3 \right) +\sqrt { { x }^{ 2 }-6x+8 } \right| } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium

$$\displaystyle \int_{0}^{1}\sqrt{1-x^{2}}dx_{=}$$
  • A. $$1-\displaystyle \frac{\pi}{4}$$
  • B. $$1-\displaystyle \frac{\pi}{3}$$
  • C. $$\displaystyle \frac{\pi}{3}$$
  • D. $$\displaystyle \frac{\pi}{4}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 One Word Medium
Prove that $$\displaystyle \int\frac{e^{\log \left ( 1+1/x^{2} \right )}}{x^{2}+1/x^{2}}dx=\frac{1}{\sqrt{\left ( 2 \right )}}\tan ^{-1}\left ( x-\frac{1}{x} \right )$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Find the antiderivative of $$f\left( x \right) = \,ln\,\left( {ln\,x} \right) + {\left( {ln\,x} \right)^{ - 2}}$$ whose graph passes through $$ (e, e)$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\displaystyle \int_2^3\dfrac{dx}{x^2-1}$$
  • A. $$log\dfrac{3}{2}$$
  • B. $$2log\dfrac{3}{2}$$
  • C. $$\log\dfrac{3}{2}$$
  • D. $$\dfrac{1}{2}log\dfrac{3}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer