Mathematics

# Evaluate the following definite integral:$\displaystyle \int_{-1}^{1}\dfrac {1}{x^2 +2x+5}dx$

##### SOLUTION
Consider, $I=\displaystyle \int_{-1}^1\dfrac {1}{x^2+2x+5}dx$

$=\displaystyle \int_{-1}^1\dfrac {1}{(x+1)^2 +2^2}dx$

$=\dfrac {1}{2}\left [\tan^{-1} \dfrac {x+1}{2}\right]_{1-}^1$

$=\dfrac {1}{2}(\tan^{-1} 1-\tan^{-1}0)$

$=\dfrac{1}{2} \left(\dfrac {\pi}{4}-0\right)$

$=\dfrac {\pi}{8}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate: $\displaystyle\int {(4x + 2)} \sqrt[3]{{{x^2} + x + 1dx}}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate: $\displaystyle\int {{{\sqrt x } \over {\sqrt {{a^3} - {x^3}} }}} dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\displaystyle \int^x_0\dfrac{x}{4-\cos^2x}dx$
Find x, using properties of definite integral.

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Write a value of
$\int { { e }^{ ax }\left[ af(x)+f'(x) \right] } dx$

Solve $\displaystyle\int \dfrac{x}{{{{\left( {x + 1} \right)}^2}}}dx$