Mathematics

Evaluate the following definite integral:

$$\displaystyle \int _{0}^{\pi /2} \cos^2 x\ dx$$


SOLUTION

$$I=\displaystyle \int _{0}^{\pi /2} \cos^2 x\ dx $$ 

$$=\displaystyle \int _{0}^{\pi /2} \dfrac {1+\cos 2x}{2} dx $$ 

$$=\dfrac {1}{2} \left [x +\dfrac {\sin 2x}{2} \right]_0^{\pi /2}$$

$$=\dfrac {1}{2}\left [\left (\dfrac {\pi}{2}+\dfrac {\sin \pi}{2} \right) -\left (0+\dfrac {\sin 0}{2}\right) \right]$$ 

$$=\dfrac {\pi}{4}$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
$$\displaystyle\int \dfrac{log (x+2)}{(x+2)^2}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
If  $$\displaystyle I_n=\int_{0}^{\tfrac{\pi}{4}} \tan^nx\sec^2xdx,$$ then  $$I_1,   I_2,  I_3..$$ are  in
  • A. A.P.
  • B. G.P.
  • C. A.G.P.
  • D. H.P.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Prove that $$\displaystyle\int^{\pi/2}_0\dfrac{dx}{(1+\cot^3x)}=\dfrac{\pi}{4}$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Write a value of 
$$\displaystyle \int { \cfrac { { \left( \log { x }  \right)  }^{ n } }{ x }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
$$\int { \cfrac { 3{ x }^{ 5 } }{ \left( 1+{ x }^{ 12 } \right)  }  } dx=$$?
  • A. $$\tan ^{ -1 }{ { x }^{ 6 } } +C$$
  • B. $$\cfrac { 1 }{ 4 } \tan ^{ -1 }{ { x }^{ 6 } } +C$$
  • C. none of these
  • D. $$\cfrac { 1 }{ 2 } \tan ^{ -1 }{ { x }^{ 6 } } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer