Mathematics

# Evaluate :  $\int \frac { \sec x d x } { \log ( \sec x + \tan x ) }$

##### SOLUTION
Let $I=\int \cfrac{\sec xdx}{\log(\sec x+\tan x)}$
Let, ${\log(\sec x+\tan x)}=z$
$\implies \sec xdx=dz$
So, $I=\int\cfrac{dz}{z}=\log z+c$
Hence $I=\log({\log(\sec x+\tan x)})+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Integrate the function    $\sqrt {x^2+3x}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Solve:
$\displaystyle \int{\dfrac{dx}{\cos(x-a)\cos (x-b)}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Find the integral of    $\displaystyle \int (2x^2-3\sin x+5\sqrt x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\int { sin\frac { x }{ 2 } } cos\frac { x }{ 2 } dx$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$