Mathematics

Evaluate $\int \sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}dx$.

SOLUTION
$\displaystyle I= \int \sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}dx$
Let $\displaystyle \sqrt{x} = cost \Rightarrow x = cos^{2} t \Rightarrow dx = -2 cos\, t\ sint\, dt$
$\displaystyle I = \int \sqrt{\frac{1-cos t}{1+cost}} \left ( -2 sint \,cos\, t \right )dt$
$\displaystyle = \int \sqrt{\frac{2 sin^{2}t/2}{2 cos^{2}t/2}} (-2 sint\, cos t)dt$
$\displaystyle = \int \dfrac{sin t/2}{cost/2} (-2 \times 2 sin t/2 cos 1/2) cos\, t\, dt$
$\displaystyle = -4 \int sin^{2}t /2\, cost\, t dt$
$\displaystyle = -4\int \frac{(1-cos\,t)}{2}cos\,t\,dt$
$\displaystyle = -4 \int \dfrac{cost}{2}dt+4 \int \dfrac{cos^{2}t}{2}dt$
$\displaystyle = -2 sin t + 2\int \frac{(1-cos t)}{2} dt + c$
$\displaystyle = -2 sin t + t + \dfrac{sint}{2} + c$
$\displaystyle = -2\sqrt{1+-cos^{2}t}+t + sin\, t\, cos t +c$
$\displaystyle = -2 \sqrt{1-cos^{2}t} + t + \sqrt{1-cos^{2} t} cos\, t + c$
Replacing cos t = $\sqrt{x}$
$\displaystyle \boxed{ I = -2\sqrt{1-x}+cos^{-1}\sqrt{x} + \sqrt{x} \sqrt{1-x}+c}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$\int { \left( \sqrt { x } \left( a{ x }^{ 2 }+bx+c \right) \right) } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\displaystyle \int e^{\tan ^{-1}x}(1+x+x^{2}) d(\cot ^{-1}x)$ is equal to
• A. $\displaystyle -e ^{\displaystyle \tan ^{-1}x}+c$
• B. $\displaystyle e ^{\displaystyle \tan ^{-1}x}+c$
• C. $\displaystyle xe ^{\displaystyle \tan ^{-1}x}+c$
• D. $\displaystyle -xe ^{\displaystyle \tan ^{-1}x}+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int\frac{1}{x(\log x)^{99}}dx_{=}$
• A. $\displaystyle \frac{1}{98(\log x)^{99}}+c$
• B. $\displaystyle \frac{1}{89(\log x)^{89}}+c$
• C. $\displaystyle \frac{-1}{89(\log x)^{89}}+c$
• D. ${-\dfrac{1}{98(\log x)^{98}}}+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
solve:
$\displaystyle \int { {\dfrac{n}{{1 - {n^2}}}} dn}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Let $n \space\epsilon \space N$ & the A.M., G.M., H.M. & the root mean square of $n$ numbers $2n+1, 2n+2, ...,$ up to $n^{th}$ number are $A_{n}$, $G_{n}$, $H_{n}$ and $R_{n}$ respectively.
On the basis of above information answer the following questions