Mathematics

# Evaluate $\int \sin x \sin(\cos x) \ dx$.

##### SOLUTION
$I=\sin x \sin(\cos x) \ dx$

Put $\cos x=t$

$-\sin x \ dx =dt$

$\int \sin x.\sin (\cos x) \ dx=-\int \sin t \ dt$

$I=\cos t+C$

$I=\cos (\cos x)+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Subjective Medium
$\displaystyle \int\dfrac{1}{a^{2} \cos^{2} x+b^{2} \sin^{2} x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int e^{e^x} . e^x dx =$ __________$+c$
• A. $\dfrac{1}{2}e^2.e^x$
• B. $\dfrac{1}{2}e^{e^x}$
• C. $(e^{e^x})^2$
• D. $e^{e^x}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate: $\displaystyle\int cos 2\theta.\ln\dfrac{cos \theta +sin\theta}{cos \theta-sin\theta}d\theta$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
If n is any positive integer, show that the integral part of $( 3 + \sqrt7)^n$ is an odd number.

$\displaystyle \int_1^2(4x^3-5x^2+6x+9)dx$