Mathematics

# Evaluate :$\int { { sin }^{ 2 }x } dx$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
$\displaystyle \int {\left\{ {\dfrac{1}{{\log x}} - \dfrac{1}{{{{\left( {\log x} \right)}^2}}}} \right\}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The value of $\int \sqrt{\dfrac{e^x -1}{e^x +1}} dx$ is equal to
• A. $ln (e^x +\sqrt{e^{2x} -1}) +sec^{-1} (e^x) +c$
• B. $ln (e^x -\sqrt{e^{2x} -1}) -sec^{-1} (e^x) +c$
• C. none of these
• D. $ln (e^x +\sqrt{e^{2x} -1}) -sec^{-1} (e^x) +c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int\frac{1+2x^{2}}{x^{2}(1+x^{2})}dx =$
• A. $\displaystyle \tan^{-1} x+\displaystyle \frac{1}{x}+c$
• B. $\displaystyle \frac{\tan^{-1}x}{x}+c$
• C. $\displaystyle \frac{\tan^{-1}x}{x^{2}}+c$
• D. $\displaystyle \tan^{-1} x-\displaystyle \frac{1}{x}+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate $\displaystyle\int^4_3\dfrac{dx}{(x^2-4)}$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
$\underset {n\rightarrow \infty}{lim}\dfrac{1^2+2^2+3^2+.....+n^2}{n^3}=.................$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020