Mathematics

Evaluate :
$$\int { { sin }^{ 2 }x } dx$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
$$\displaystyle \int {\left\{ {\dfrac{1}{{\log x}} - \dfrac{1}{{{{\left( {\log x} \right)}^2}}}} \right\}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
The value of $$\int \sqrt{\dfrac{e^x -1}{e^x +1}} dx $$ is equal to 
  • A. $$ln (e^x +\sqrt{e^{2x} -1}) +sec^{-1} (e^x) +c$$
  • B. $$ln (e^x -\sqrt{e^{2x} -1}) -sec^{-1} (e^x) +c$$
  • C. none of these
  • D. $$ln (e^x +\sqrt{e^{2x} -1}) -sec^{-1} (e^x) +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int\frac{1+2x^{2}}{x^{2}(1+x^{2})}dx =$$
  • A. $$\displaystyle \tan^{-1} x+\displaystyle \frac{1}{x}+c$$
  • B. $$\displaystyle \frac{\tan^{-1}x}{x}+c $$
  • C. $$\displaystyle \frac{\tan^{-1}x}{x^{2}}+c$$
  • D. $$\displaystyle \tan^{-1} x-\displaystyle \frac{1}{x}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate $$\displaystyle\int^4_3\dfrac{dx}{(x^2-4)}$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\underset {n\rightarrow \infty}{lim}\dfrac{1^2+2^2+3^2+.....+n^2}{n^3}=.................$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer