Mathematics

# Evaluate $\int {{r^4}\left( {7 - \dfrac{{{r^5}}}{{10}}} \right)} \,dr$

##### SOLUTION
$I=\displaystyle\int r^4\left(7-\dfrac{r^5}{10}\right)dr$

$=\displaystyle\int \left(7r^4-\dfrac{r^9}{10}\right)dr$

$=7\displaystyle\int r^4dr-\dfrac{1}{10}\displaystyle\int r^9dr$

$=\dfrac{7}{5}r^5-\dfrac{1}{100}r^{10}+c$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium

Evaluate the following definite integral:

$\displaystyle\int_{1}^{2} \dfrac 2x\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Write a value of
$\int { \sqrt { { x }^{ 2 }-9 } } \ dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int\cos^{-3/7}x\sin^{-11/7}xdx$ is equal to
• A. $\log|\sin^{4/7}x|+c$
• B. $\displaystyle \frac{4}{7}\tan^{4/7}x+c$
• C. $\log|\cos^{3/7}x|+c$
• D. $-\displaystyle \frac{7}{4}\tan^{-4/7}x+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
If $\phi \left( x \right) = {\int {\left\{ {\phi \left( x \right)} \right\}} ^{ - 2}}dx$ and $\phi \left( 1 \right) = 0$ then $\phi \left( x \right) =$
• A. ${\left\{ {2\left( {x - 1} \right)} \right\}^{\frac{1}{4}}}$
• B. ${\left\{ {5\left( {x - 2} \right)} \right\}^{\frac{1}{5}}}$
• C. none of these
• D. ${\left\{ {3\left( {x - 1} \right)} \right\}^{\frac{1}{3}}}$

Evaluate: $\displaystyle \overset{\pi/2}{\underset{0}{\int}} \sin x\cdot \sin 2x \,\,dx$.