Mathematics

# Evaluate: $\int \left( e ^ { a \log x } + e ^ { x \log a } \right) d x$

$\dfrac { x ^ { a + 1 } } { a + 1 } + \dfrac { a ^ { x } } { \log a } + c$

##### SOLUTION
$\displaystyle\int e^{alog x}+e^{xlog a}dx$
$=\displaystyle\int e^{log x^a}+e^{log a^x}dx$
$=\displaystyle\int x^a+a^xdx$
$=\dfrac{x^{a+1}}{a+1}+\dfrac{a^x}{log a}+c$.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Solve $\displaystyle \int \sec^{2}(7-4x) dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $\int \sin x d (\sec x) = f(x) - g(x) + c$, then
• A. $f(x) = \sec x$
• B. $g(x) = 2x$
• C. $g = - x$
• D. $f(x) = \tan x$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate with respect to $x$:
$\dfrac {x}{\sqrt {x+2}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Solve $\int { \cfrac { \cot { x } }{ \sqrt { \cos ^{ 4 }{ x } +\sin ^{ 4 }{ x } } } } dx=......+c$
• A. $\cfrac { 1 }{ 2 } \log { \left| \cot ^{ 2 }{ x } +\sqrt { \cot ^{ 4 }{ x } +1 } \right| }$
• B. $\cfrac { 1 }{ 2 } \log { \left| \tan ^{ 2 }{ x } +\sqrt { \tan ^{ 4 }{ x } +1 } \right| }$
• C. $-\cfrac { 1 }{ 2 } \log { \left| \cot ^{ }{ x } +\sqrt { \cot ^{ 4 }{ x } +1 } \right| }$
• D. $-\cfrac { 1 }{ 2 } \log { \left| \cot ^{ 2 }{ x } +\sqrt { \cot ^{ 4 }{ x } +1 } \right| }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Easy
Evaluate $\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020