Mathematics

# Evaluate $\int e^{\tan q} (\sec q - \sin q)dq$ equals-

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
Evaluate
$\displaystyle\int {\dfrac{{\sin x + \cos x}}{{{{\left( {\sin x - \cos x} \right)}^2}}}dx}$
• A. $\dfrac {1}{\sin x-\cos x}+C$
• B. $\dfrac {-1}{\sin x+\cos x}+C$
• C. None of these
• D. $\dfrac {-1}{\sin x-\cos x}+C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int_{0}^{2\pi}{ln(1+\cos{x})}dx=$
• A. $\pi\ln{2}$
• B. $-\pi\ln{2}$
• C. $2\pi\ln{2}$
• D. $-2\pi\ln{2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate the following definite integrals :
$\displaystyle \int _{0}^{\pi /2} \cos^2 x\ dx$
• A. $1$
• B. $\frac { \pi }5$
• C. None of these
• D. $\frac { \pi }{ 4 }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
lf $f(x)=\displaystyle \int\frac{(x^{2}+\sin^{2}x)}{1+x^{2}}\sec^{2}xdx$ and $f(0)=0$ then $f(1)$ is equal to
• A. $\displaystyle 1- \frac{\pi}{4}$
• B. $\displaystyle \frac{\pi}{4}-1$
• C. $\displaystyle \frac{\pi}{4}-\tan 1$
• D. $\displaystyle \tan 1- \frac{\pi}{4}$

Evaluate $\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$