Mathematics

Evaluate :$\int {\dfrac{x}{{{{\left( {x\, - 1} \right)}^2}\left( {x + \,2} \right)}}} \,dx$.

SOLUTION
$\displaystyle \int \dfrac{x}{(x-1)^{2}(x+2)}dx$
$\displaystyle \dfrac{x}{(x-1)^{2}(x+2)} = \dfrac{A}{x-1}+\dfrac{B}{(x-1)^{2}}+\dfrac{C}{(x+2)}$
$x = A(x-1)(x+2)+B(x+2)+C(x-1)^{2}$
Equating coefficients
$A+C = 0$
$A+B-2C = 1$
$-2A+2B+C = 0$
On solving
$\displaystyle A = \dfrac{2}{9} C = \dfrac{-2}{9} B = \dfrac{1}{3}$
$\displaystyle \int \dfrac{x}{(x-1)^{2}(x+2)}dx = \frac{2}{9}\int \frac{1}{x-1}dx+\frac{1}{3}\int \frac{1}{(x-1)^{2}}dx-\frac{2}{9}\int \frac{1}{x+2}dx$
$\displaystyle I = \frac{2}{9}log|x-1|+\frac{1}{3}\frac{-1}{(x-1)}-\frac{2}{9}|x+2|+c$
$\displaystyle I = \frac{2}{9}log \frac{|x-1|}{|x+2|}-\frac{1}{3(x-1)}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Subjective Hard
Evaluate $\int_{0}^{4}(|x| + |x - 2| + |x - 4|)$dx.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\displaystyle\int{\frac{x^2(1-\ln{x})}{\ln^4{x}-x^4}dx}$ is equal to
• A. $\displaystyle\frac{1}{2}\ln{\left(\frac{x}{\ln{x}}\right)}-\frac{1}{4}\ln{(\ln^2{x}-x^2)}+C$
• B. $\displaystyle\frac{1}{4}\ln{\left(\frac{\ln(x)+x}{\ln{x}-x}\right)}-\frac{1}{2}\tan^{-1}{\left(\frac{\ln{x}}{x}\right)}+C$
• C. $\displaystyle\frac{1}{4}\left(\ln{\left(\frac{\ln(x)-x}{\ln{x}+x}\right)}+\tan^{-1}{\left(\frac{\ln{x}}{x}\right)}\right)+C$
• D. $\displaystyle\frac{1}{4}\ln{\left(\frac{\ln(x)-x}{\ln{x}+x}\right)}-\frac{1}{2}\tan^{-1}{\left(\frac{\ln{x}}{x}\right)}+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $\int { { e }^{ \sec { x } }\left( \sec { x } \tan { x } f(x)+(\sec { x } \tan { x } +\sec ^{ 2 }{ x } \right) } dx={ e }^{ \sec { x } }f(x)+C$, then a possible choice of $f(x)$ is:
• A. $\sec { x } -\tan { x } -\cfrac { 1 }{ 2 }$
• B. $x\sec { x } +\tan { x } +\cfrac { 1 }{ 2 } \quad$
• C. $\sec { x } +x\tan { x } -\cfrac { 1 }{ 2 }$
• D. $\sec { x } +\tan { x } +\cfrac { 1 }{ 2 }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
A tank initially holds 10 lit. of fresh water. At t = 0, a brine solution containing $\displaystyle \frac{1}{2}$ kg of salt per lit. is poured into tank at a rate 1 lit/min while the well-stirred mixture leaves the tank at the same rate. Find the concentration of salt in the tank at any time $t$.
• A. $- 5e^{-t} - 5$ kg/L
• B. $5e^{t} + 5$ kg/L
• C. none of the above
• D. $- 5e^{-t} + 5$ kg/L

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020