Mathematics

# Evaluate: $\int \dfrac{sinx}{1-cos x}$

##### SOLUTION
Formatting Area.
His waves,on correct formatting it becomes
$I = \int \frac{sin\,x}{1-cos\,x}dx$
Put $1-cos\,x = t$
$sin\,xdx = dt$
$\therefore I = \int \frac{dt}{t}$
$= log \left | t \right |+c$, where c is an arbitrary constant
$= log \left | 1-cos\,x \right |+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int\sqrt{x}.\log xdx=$
• A. $\displaystyle \frac{2}{3}x^{3/2}.\log x+x^{3/2}+c$
• B. $x^{3/2}.(\displaystyle \log x-\frac{2}{3})+c$
• C. $\displaystyle \frac{2}{5}x^{3/2}(\log x+1)+c$
• D. $\displaystyle \frac{2}{3}x^{3/2}.\log x-\frac{4}{9}x^{3/2}+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\text { Evaluate: } \displaystyle \int_{0}^{1} \dfrac{d x}{1+x^{2}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\int {\sqrt {x + a\sqrt {ax - {a^2}} } \,dx,0 < a < 2 = \frac{2}{{{a^{\frac{3}{2}}}}}{{\left\{ {ax + a\sqrt {ax - {a^2}} } \right\}}^{\frac{3}{2}}} - \frac{{\sqrt a }}{2}\left[ {A + B} \right]} + c$. Then
• A. $A = \left[ {\left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right)\sqrt {ax + {a^2}\sqrt {ax - {a^2}} } } \right\}} \right]$
• B. $A = \left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right)\sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}$
• C. $B = \log \left\{ {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}\sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}$
• D. $B = \log \left[ {\left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right) + \sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}} \right]$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate : $\displaystyle \int \frac{2^x}{\sqrt{1-4^x}}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 One Word Hard
If $f(x)$ is a function satisfying, $\displaystyle f\left(\frac{1}{x}\right)+x^2f(x)=0$ for all non-zero $x$,
then evaluate $\displaystyle\int_{\displaystyle\sin{\theta}}^{\displaystyle\csc{\theta}}{f(x)dx}$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020