Mathematics

Evaluate: $$\int \dfrac{sinx}{1-cos x}$$


SOLUTION
Formatting Area.
His waves,on correct formatting it becomes 
$$ I = \int \frac{sin\,x}{1-cos\,x}dx $$
Put $$ 1-cos\,x = t $$
$$ sin\,xdx = dt $$
$$ \therefore I = \int \frac{dt}{t} $$
$$ = log \left | t \right |+c $$, where c is an arbitrary constant
$$ = log \left | 1-cos\,x \right |+c $$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle \int\sqrt{x}.\log xdx=$$
  • A. $$\displaystyle \frac{2}{3}x^{3/2}.\log x+x^{3/2}+c$$
  • B. $$x^{3/2}.(\displaystyle \log x-\frac{2}{3})+c$$
  • C. $$\displaystyle \frac{2}{5}x^{3/2}(\log x+1)+c$$
  • D. $$\displaystyle \frac{2}{3}x^{3/2}.\log x-\frac{4}{9}x^{3/2}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
$$\text { Evaluate: } \displaystyle \int_{0}^{1} \dfrac{d x}{1+x^{2}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int {\sqrt {x + a\sqrt {ax - {a^2}} } \,dx,0 < a < 2 = \frac{2}{{{a^{\frac{3}{2}}}}}{{\left\{ {ax + a\sqrt {ax - {a^2}} } \right\}}^{\frac{3}{2}}} - \frac{{\sqrt a }}{2}\left[ {A + B} \right]}  + c$$. Then
  • A. $$A = \left[ {\left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right)\sqrt {ax + {a^2}\sqrt {ax - {a^2}} } } \right\}} \right]$$
  • B. $$A = \left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right)\sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}$$
  • C. $$B = \log \left\{ {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}\sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}$$
  • D. $$B = \log \left[ {\left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right) + \sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}} \right]$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate : $$\displaystyle \int \frac{2^x}{\sqrt{1-4^x}}dx $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 One Word Hard
If $$f(x)$$ is a function satisfying, $$\displaystyle f\left(\frac{1}{x}\right)+x^2f(x)=0$$ for all non-zero $$x$$, 
then evaluate $$\displaystyle\int_{\displaystyle\sin{\theta}}^{\displaystyle\csc{\theta}}{f(x)dx}$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer