Mathematics

# Evaluate $\int {\dfrac{{{{\left( {\sin x} \right)}^{2018}}}}{{{{\left( {\cos x} \right)}^{2020}}}}\,\,dx}$

##### SOLUTION
$=\displaystyle\int \dfrac{\sin x^{2018}}{(\cos x)^{2019}}dx$
$=\displaystyle\int (\tan x)^{2018}\cdot \sec x^2\cdot dx$
$=\dfrac{1}{2019}\cdot \tan x^{2019}+c$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate the following:
$\displaystyle \int_{-\pi/4}^{\pi/4} log(sin x + cos x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle \int_{1}^{2}{(x+3)}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
solve $\int \frac{1}{1+e^{-1}}\;dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int{ \sin }^{ 4 }x \cos x dx$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$