Mathematics

# Evaluate : $\int \dfrac{e^x+1}{e^x+x} \cdot dx$

##### SOLUTION
Let $t={e}^{x}+x$
$\Rightarrow dt={e}^{x}+1.dx$
$\int{\dfrac{dt}{t}}=\ln{t}+c$ where $c$ is the constant of integration.
$\int{\dfrac{{e}^{x}+1}{{e}^{x}+x}dx}=\ln{\left({e}^{x}+x\right)}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Integrate the rational function   $\cfrac {x}{(x+1)(x+2)}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Solve $\displaystyle\int \dfrac {x^{3}\sin (\tan^{-1}x^{4})}{1+x^{8}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
Let $\displaystyle \frac{d}{dx}F(x)=\frac{e^{{s}{m}{x}}}{x}$ , $x>0$. lf $\displaystyle \int_{1}^{4}\frac{3}{x}e^{{s}{m}{x}^{3}}dx=F(k)-F(1)$, then one of the possible values of ${k}$ is
• A. $16$
• B. $62$
• C. $15$
• D. $64$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate $\displaystyle \int \frac{\sec^{2}\:x}{\sqrt{\tan^{2}\:x+4}}dx.$
• A. $\displaystyle=\log\left | \tan\:x+\sqrt{4 \tan^{2}\:x+4} \right |+C$
• B. $\displaystyle=\log\left | \tan\:x-\sqrt{\tan^{2}\:x+4} \right |+C$
• C. $\displaystyle=\log\left | \tan\:x+\sqrt{\tan^{2}\:x-4} \right |+C$
• D. $\displaystyle=\log\left | \tan\:x+\sqrt{\tan^{2}\:x+4} \right |+C$

$\int {\frac{{\ell nx}}{{{{\left( {1 + \ell nx} \right)}^2}}}dx}$