Mathematics

Evaluate: $\int _{ -1 }^{ 1 }{ { e }^{ x } } dx$

SOLUTION
$I=\displaystyle\int_{-1}^{1}{{e}^{x}dx}$

$=\left[{e}^{x}\right]_{-1}^{1}$

$={e}^{1}-{e}^{-1}$

$=e-\dfrac{1}{e}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

Realted Questions

Q1 Subjective Medium
Solve $\int_{0}^{\frac {\pi}{2}} \dfrac {\cos^{2}x\ dx}{\cos^{2}x+4\sin^{2}x}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int_{0}^{1}\frac{x^{2}}{1+x^{6}}dx$
• A. $\displaystyle \frac{\pi }{8}$
• B. $\displaystyle \pi$
• C. $\displaystyle \frac{\pi }{4}$
• D. $\displaystyle \frac{\pi }{12}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate :
$\int {\dfrac{1}{{\left( {x + 2} \right)\left( {x + 2} \right)}}} dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve:
$\displaystyle \int_{4}^{5}{e^x dx}$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$