Mathematics

# Evaluate: $I=\int \dfrac{e^{x}}{(1+e^{x})(2+e^{x})}$ dx

##### SOLUTION
$\begin{array}{l} \int _{ }^{ }{ \frac { { { e^{ x } } } }{ { \left( { 1+{ e^{ x } } } \right) \left( { x+{ e^{ x } } } \right) } } } dx \\ Let, \\ 1+{ e^{ x } }=t \\ \frac { { dt } }{ { dx } } ={ e^{ x } } \\ =\int _{ }^{ }{ \frac { { dt } }{ { t\left( { t+1 } \right) } } } \\ =\int _{ }^{ }{ \frac { { dt } }{ { { t^{ 2 } }+t } } } \\ =\int _{ }^{ }{ \frac { { dt } }{ { { { \left( { t+\frac { 1 }{ 2 } } \right) }^{ 2 } }-{ { \left( { \frac { 1 }{ 2 } } \right) }^{ 2 } } } } } \\ =\frac { 1 }{ { 2\times \frac { 1 }{ 2 } } } \ln { \left| { \frac { { \left( { t+\frac { 1 }{ 2 } } \right) -\frac { 1 }{ 2 } } }{ { \left( { t+\frac { 1 }{ 2 } } \right) +\frac { 1 }{ 2 } } } } \right| } +C \\ =\ln { \left| { \frac { t }{ { t+1 } } } \right| } +C \\ I=\ln { \left| { \frac { { 1+{ e^{ x } } } }{ { 2+{ e^{ x } } } } } \right| } +C \end{array}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
$\displaystyle \int { \dfrac { 2- 3 \sin x}{\cos^2 x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
If $I=\displaystyle \int_{0}^{\pi/2}sinx.log(sin x)dx = log\left(\dfrac{K}{e}\right).$ Then find the value of $K.$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following definite integrals:

$\displaystyle \int _{0}^{1/3} \dfrac {1}{\sqrt {1-x^2}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle\int \left ( \log x \right )^{2}dx.$
• A. $\displaystyle x\left ( \log x \right )^{2}+2x \log x+2x$
• B. $\displaystyle x\left ( \log x \right )^{2}-2x \log x$
• C. $\displaystyle x\left ( \log x \right )^{2}+2x \log x+x$
• D. $\displaystyle x\left ( \log x \right )^{2}-2x \log x+2x$

Evaluate $\displaystyle \int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$.