Mathematics

# Evaluate: $\displaystyle\int{\dfrac{1+\cos x} { x+\sin x}dx }$.

##### SOLUTION
Now,
$\displaystyle\int{\dfrac{1+\cos x} { x+\sin x}dx }$
$\displaystyle\int{\dfrac{d(x+\sin x)} { x+\sin x} }$
$=\log|(x+\sin x)|+c$ [ Where $c$ is integrating constant]

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
If the anti-derivative of $\displaystyle \int \frac{\sin^4 x}{x} dx$ is $f(x)$, then $\displaystyle \int \frac{\sin^4 \{ (p + q)x \}}{x} dx$ in terms of $f(x)$ is
• A. $\frac{f \{ (p + q)x \}}{p + q}$
• B. $f \{ (p + q)x \} (p + q)$
• C. None of these
• D. $f \{ (p + q)x \}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle \int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard

$\displaystyle \int_{0}^{\pi/2}\sqrt{\cos x}\sin^{5}xdx=$
• A. $\displaystyle \frac{34}{231}$
• B. $\displaystyle \frac{30}{321}$
• C. $\displaystyle \frac{128}{231}$
• D. $\displaystyle \frac{64}{231}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Evaluate the integral
$\displaystyle \int_{0}^{\pi}\dfrac{dx}{a+b\ cos\ x}$ where $a>b$
• A. $\pi \sqrt{{a}^{2}-{b}^{2}}$
• B. $\pi ab$
• C. $\dfrac{\pi}{\sqrt{a^{2}+b^{2}}}$
• D. $\dfrac{\pi}{\sqrt{a^{2}-b^{2}}}$

Evaluate $\int \dfrac{ \sin v}{v^2 \cos v+ \cos v}dv$