Mathematics

Evaluate $\displaystyle\int^{3}_{2}3^{x}dx$

$\dfrac{18}{\ln 3}$

SOLUTION
$I=\displaystyle\int_{2}^{3}3^{x}dx$ $=$ $\left [ \dfrac{3^{x}}{\ln{3}} \right ]_{2}^{3}$

$=\dfrac{3^{3}}{\ln3}-\dfrac{3^{2}}{\ln3}=\dfrac{27-9}{\ln3}=\dfrac{18}{\ln3}$.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

Realted Questions

Q1 Single Correct Medium
The value of $\displaystyle\int^{1000}_0e^{x-|x|}dx$, is($[.]$ denotes the greatest integer function)
• A. $1000e$
• B. $1001(e-1)$
• C. None of these
• D. $1000(e-1)$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of $\displaystyle \int_{-\pi /2}^{\pi /2}\sqrt{\frac{1}{2}\left ( 1-\cos 2x \right )}$ dx is
• A. $0$
• B. $\displaystyle \frac{1}{2}$
• C. None of these.
• D. $2$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate $\int {\sqrt {1 - {t^2}} } dt$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate the integral
$\displaystyle \int_{0}^{\pi /4}\frac{ {x}^{2} {d} {x}}{( {x} {si} {n} {x}+ {c} {o} {s} {x})^{2}}$
• A. $\displaystyle \dfrac{4+\pi}{4-\pi}$
• B. $\displaystyle \dfrac{4+\pi}{2(4-\pi)}$
• C. $2\left[\displaystyle \dfrac{4-\pi}{4+\pi}\right]$
• D. $\displaystyle \dfrac{4-\pi}{4+\pi}$

$\int \frac{2x^{2}}{3x^{4}2x} dx$