Mathematics

# Evaluate: $\displaystyle\int \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}= ?$

##### SOLUTION

$I = \displaystyle \int {\left[ {\log \left( {\log x} \right) + {1 \over {{{\left( {\log x} \right)}^2}}}} \right]dx}$

$= \displaystyle \int {\log \mathop {\left( {\log x} \right)}\limits_I } .\mathop {1dx}\limits_{II} + \displaystyle \int {{1 \over {{{\left( {\log x} \right)}^2}}}dx}$

$= \log \left( {\log x} \right).x - \displaystyle \int {{1 \over {\log x}} \times {1 \over x}} .x + \displaystyle \int {{1 \over {{{\left( {\log x} \right)}^2}}}dx}$

$= \log \left( {\log x} \right) - \displaystyle \int {\mathop {{1 \over {\log x}}}\limits_I .} \mathop {1dx}\limits_{II} + \displaystyle \int {{1 \over {{{\left( {\log x} \right)}^2}}}dx}$

$= \log \left( {\log x} \right) - {1 \over {\log x}}.x + \displaystyle \int { - {1 \over {{{\left( {\log x} \right)}^2}}}.1dx + } \displaystyle \int {{1 \over {{{\left( {\log x} \right)}^2}}}dx}$

$= x\log \left( {\log x} \right) - {x \over {\log x}} + c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

#### Realted Questions

Q1 Subjective Medium
Integrate the rational function   $\cfrac {5x}{(x+1)(x^2-4)}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int \frac{8x+13}{\sqrt{4x+7}}dx$ is equal to-
• A. $-(4x+7)^\cfrac{3}{2} - \dfrac{(4x-7)}{2} +c$
• B. $-(4x+7)^\cfrac{3}{2} - (4x+7) +c$
• C. $-\dfrac{(4x+7)^\cfrac{3}{2}}{3} - \dfrac{(4x+7)}{2} +c$
• D. $\dfrac{(4x+7)^\cfrac{3}{2}}{3} - \dfrac{-1}{2}x^\frac{1}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate the given integral.
$\displaystyle \int { \tan ^{ -1 }{ \left( \cfrac { 2x }{ 1-{ x }^{ 2 } } \right) } } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $f(y)=e^y, g(y)-y; y > 0$ and $F(t)=\displaystyle\int^t_0f(t-y)g(y)dy$, then?
• A. $F(t)=t e^t$
• B. $F(t)=t e^{-t}$
• C. $F(t)=1-e^{-t}(1+t)$
• D. $F(t)=e^t-(1+t)$

$\displaystyle \int { \dfrac { dx }{ \tan { x } +\cot { x } } = }$