Mathematics

# Evaluate: $\displaystyle\int \dfrac{\sin^3x}{( \cos^4x+ 3 \cos^2x+ 1)\tan^{-1} ( \sec x+ \cos x)}dx$

$\log_e | \tan^{-1} ( \sec x + \cos x) |+c$

##### SOLUTION
we have to evaluate
$I= \int\dfrac{sin^3\ x}{(cos^4x+3\ cos^2+1)tan^{-1}(sec\ x+ cos\ x)}dx$

Let us assume $tan^{-1}(sec\ x+ cos\ x)=t$

then,
$\Rightarrow \dfrac{1}{1+ (sec\ x+cos\ x)^2}.(sec\ x.tan\ x- sin\ x)dx=dt$

$\Rightarrow \dfrac{1}{1+ (\dfrac{1}{cos\ x}+cos\ x)^2}.(\dfrac{sin\ x}{cos^2\ x}- sin\ x)dx=dt$

$\Rightarrow \dfrac{cos^2\ x}{cos^2\ x+ (1+cos^2\ x)^2}.\dfrac{(sin\ x- sin\ xcos^2\ x)}{cos^2\ x}dx=dt$

$\Rightarrow \dfrac{sin\ x(1- cos^2x)}{cos^2x+1+ cos^4x+2cos^2x}dx=dt$

$\Rightarrow \dfrac{sin^3x}{ cos^4x+3cos^2x+ 1}dx=dt$

$I= \int\dfrac{sin^3x}{(cos^4x+3 cos^2+1)tan^{-1}(sec\ x+ cos\ x)}dx\Rightarrow\int\dfrac{dt}{t}$

$I = log_e\begin{vmatrix}t\end{vmatrix}+ c$

$I = log_e\begin{vmatrix}tan^{-1}(sec\ x +cos\ x)\end{vmatrix}+ C$

$\therefore \text{ Correct answer is option B.}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
$\int \sin^{3}x\cos^{2}x dx$ is equal to

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Find $\displaystyle \int \dfrac{x^4+1}{x(x^2+1)^2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle \int \frac{1}{x\sqrt{1-x^{3}}}dx=a\log \left | \frac{\sqrt{1-x^{3}}-1}{\sqrt{1-x^{3}}+1} \right |+b$, then a is equal to
• A. $\displaystyle\frac {2}{3}$
• B. $\displaystyle \frac {-1}{3}$
• C. $\displaystyle \frac {-2}{3}$
• D. $\displaystyle\frac {1}{3}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\int \dfrac{x^{3}}{(1+x^{2})^{3}}dx=$
• A. $\dfrac{1}{4}$
• B. $\dfrac{1}{12}$
• C. $\dfrac{1}{16}$
• D. $\dfrac{1}{5}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Easy
Evaluate:
$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020