Mathematics

# Evaluate $\displaystyle\int { \dfrac { \sin { x } }{ \sin { (x+a) } } dx }$

##### SOLUTION
$\displaystyle\int \dfrac{\sin x}{\sin (x+a)}d x$

$=\int \dfrac{\sin (x+a-a)}{\sin (x+a)}d x$

$=\int \dfrac{\sin (x+a)\cos a-\cos(x+a)\sin a}{\sin (x+a)}d x$

$=\cos a\int d x-\sin a\int \cot (x+a)d x$

$=x\cos a+\sin a\log \cos (x+a)+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Solve $\displaystyle\int\dfrac{e^{x}(1+x)}{\cos^{2}(e^{x}x)}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate : $\displaystyle \int_{\pi/6}^{\pi/3}{\cfrac{1}{1+\sqrt{\tan{x}}}}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate: $\displaystyle \int_{0}^{\pi/4} \log (1+\tan \theta )d\theta$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate:
$\int { \cfrac { dx }{ { \left( x+1 \right) }^{ 2 }({ x }^{ 2 }+1) } }$

$\int \dfrac {3x-1}{(x-1)(x-2)(x-3)}dx$