Mathematics

Evaluate: $\displaystyle\int \dfrac { \cos x + x \sin x } { x ( x + \cos x ) } d x$

SOLUTION
$I=\displaystyle\int \dfrac{\cos x+x\sin x}{x(x+\cos x)}dx$

$I=\displaystyle\int \dfrac{(\cos x+x)+(x\sin x-x)}{x(x+\cos x)}dx$

$I=\displaystyle\int \dfrac{1}{x}\dfrac{(x+\cos x)}{(x+\cos x)}+\displaystyle\int \dfrac{x(\sin x-1)}{x(x+\cos x)}dx$

$I=\displaystyle\int \dfrac{1}{x}dx+\displaystyle\int \dfrac{(\sin x-1)}{x+\cos x}dx$

Let $x+\cos x=u$

$du=(1-\sin x)dx$

$I=ln|x|+\displaystyle\int \dfrac{-(1-\sin x)}{u}\dfrac{du}{(1-\sin x)}$

$I=\ln|x|-\ln|u|+c$

$I=\ln|x|-\ln|x+\cos x|+c$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Single Correct Medium
Evaluate $\int {{e^x}\left( {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} \right)} \,dx$
• A. $\dfrac {e^x}{x^2}+C$
• B. $-\dfrac {e^x}{x^2}+C$
• C. $-\dfrac {e^x}{x}+C$
• D. $\dfrac {e^x}{x}+C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int \dfrac{\sqrt{5 + x^2}}{x^4}dx$ is equal to
• A. $\dfrac{1}{15} \left( 1 + \dfrac{5}{x^2} \right )^{\frac{3}{2}} + C$
• B. $\dfrac{-1}{15} \left( 1 + \dfrac{1}{x^2} \right )^{\frac{3}{2}} + C$
• C. $\dfrac{1}{15} \left( 1 + \dfrac{1}{x^2} \right )^{\frac{3}{2}} + C$
• D. $\dfrac{-1}{10} \left( 1 + \dfrac{1}{x^2} \right )^{\frac{3}{2}} + C$
• E. $\dfrac{-1}{15} \left( 1 + \dfrac{5}{x^2} \right )^{\frac{3}{2}} + C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate :

$\int { \sqrt { \cfrac { 1+\cos { 2x } }{ 2 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate the given integral.
$\displaystyle \int { \cfrac { 1 }{ 1-\sin { x } +\cos { x } } } dx$

Integrate the function : $x\sqrt {x+2}$