Mathematics

Evaluate: $\displaystyle\int \dfrac {1}{2x+3}dx$

SOLUTION

Let $t=2x+3 \implies dt=2 dx$

$\Rightarrow \displaystyle \int \dfrac 1{2t }dt$

$\Rightarrow \dfrac12 \log t$

$\Rightarrow \dfrac12[\log 2x+3]$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Single Correct Hard
If $\displaystyle I_{n}=\int (\ln x)^{n} dx,$ then $I_{n}+nI_{n-1}=$
• A. $\displaystyle \frac{\left ( \ln x \right )^{n}}{x}+C$
• B. $x(\ln x)^{n-1}+C$
• C. none of these
• D. $x(\ln x)^{n}+C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve : $\int e^x. \sin \,3xdx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following integral:
$\displaystyle \int_{0}^{3}x^2 \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Integrate : $\displaystyle \int { \frac { 1+\tan { x } }{ x+\log { \sec { x } } } dx }$

If $f,g,h$ be continuous functions on $[0,a]$ such that $f(a-x)=-f(x),g(a-x)=g(x)$ and $3h(x)-4h(a-x)=5$ then  $\displaystyle \int_0^a f(x)g(x)h(x)dx=0$