Mathematics

# Evaluate: $\displaystyle\int_{4}^{9}\dfrac{\sqrt{x}}{(30-x^{3/2})^{2}}\, dx$

##### SOLUTION
$\displaystyle \int_4^9 \dfrac{\sqrt{x}}{(30-x^{3/2})^2} dx$

Let $t = 30 - x^{3/2}$

$dt = 0 - \dfrac{3}{2} x^{1/2} . dx = -\dfrac{3}{2} \sqrt{x} dx$

$\dfrac{-2}{3} dt = \sqrt{x} dx$

$\Rightarrow \displaystyle \int_4^9 \dfrac{-2/3. dt}{t^2} = \dfrac{-2}{3} \int_4^9 \dfrac{dt}{t^2} = \dfrac{-2}{3} \left[\dfrac{-1}{t} \right]_4^9$

$= \dfrac{-2}{3} \left[\dfrac{-1}{30-x^{3/2}} \right]_4^9 = \dfrac{+2}{3} \left[\dfrac{1}{30-27} - \dfrac{1}{30-3} \right]$

$= \dfrac{2}{3} \left[\dfrac{1}{3} - \dfrac{1}{22} \right] = \dfrac{2}{3} \times \dfrac{19}{66} = \dfrac{19}{99}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Integrate the function    $\cfrac {x+2}{\sqrt {x^2-1}}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $\left( x+1 \right) =f\left( 3+1 \right) x$ and the value of $\int _{ a }^{ a+b }{ f\left( x \right) dx }$ is independent of a, then the value of b can be   ___________________.
• A. 1
• B. 2
• C. 4
• D. 3

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\int _{-\frac{\pi }{2}}^{\frac{\pi }{2}}\:\dfrac{dx}{e^{sin\:x}+1}dx$ is equal to
• A. $0$
• B. $1$
• C. $-\dfrac{\pi}{2}$
• D. $\dfrac{\pi}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int e^x(\tan x+\sec ^2 x)dx$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$