Mathematics

# Evaluate :$\displaystyle\int_{-3}^{3}|x+1|\ dx$

##### SOLUTION
Now,

$\displaystyle\int_{-3}^{3}|x+1|\ dx$

$=-\displaystyle\int_{-3}^{-1}(x+1)\ dx$$+\displaystyle\int_{-1}^{3}(x+1)\ dx =-\left[\dfrac{x^2}{2}+x\right]_{-3}^{-1}$$+\left[\dfrac{x^2}{2}+x\right]_{-1}^{3}$

$=-\left[\dfrac{1-9}{2}+(-1+3)\right]$$+\left[\dfrac{9-1}{2}+(3+1)\right]$

$=-(-4+2)+(4+4)$

$=10$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate $\int x\cdot log (x+1) dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate: $\int \cos 2 x \cdot \sin 2 x \cdot d x$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Solve :
$\displaystyle \int \dfrac{dx}{sinx + cosx}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $\int { { e }^{ 2x } } f'(x)dx=g(x)$, then $\int { \left( { e }^{ 2x }f(x)+{ e }^{ 2x }f'(x) \right) } dx$
• A. $\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(x)-g(x) \right] +C$
• B. $\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(2x)+g(x) \right] +C$
• C. $\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f'(x)-g(x) \right] +C$
• D. $\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(x)+g(x) \right] +C$

Solve $\displaystyle \int \cos^{3}x\ dx$