Mathematics

Evaluate :
$$\displaystyle\int_{-3}^{3}|x+1|\ dx$$


SOLUTION
Now,

$$\displaystyle\int_{-3}^{3}|x+1|\ dx$$

$$=-\displaystyle\int_{-3}^{-1}(x+1)\ dx$$$$+\displaystyle\int_{-1}^{3}(x+1)\ dx$$

$$=-\left[\dfrac{x^2}{2}+x\right]_{-3}^{-1}$$$$+\left[\dfrac{x^2}{2}+x\right]_{-1}^{3}$$

$$=-\left[\dfrac{1-9}{2}+(-1+3)\right]$$$$+\left[\dfrac{9-1}{2}+(3+1)\right]$$

$$=-(-4+2)+(4+4)$$

$$=10$$.
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate $$\int x\cdot log (x+1) dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate: $$\int \cos 2 x \cdot \sin 2 x \cdot d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Hard
Solve :
$$\displaystyle \int \dfrac{dx}{sinx + cosx}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
If $$\int { { e }^{ 2x } } f'(x)dx=g(x)$$, then $$\int { \left( { e }^{ 2x }f(x)+{ e }^{ 2x }f'(x) \right)  } dx$$
  • A. $$\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(x)-g(x) \right] +C$$
  • B. $$\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(2x)+g(x) \right] +C$$
  • C. $$\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f'(x)-g(x) \right] +C$$
  • D. $$\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(x)+g(x) \right] +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Solve $$\displaystyle \int \cos^{3}x\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer