Mathematics

Evaluate: $$\displaystyle\int {{{2 - 3\sin x} \over {{{\cos }^2}x}}dx} $$


SOLUTION
Solution:
$$I=\displaystyle \int { \frac { 2-3\sin { x }  }{ \cos ^{ 2 }{ x }  } dx } $$

$$=\displaystyle \int { 2\sec ^{ 2 }{ x } dx } -3\int { \frac { \sin { x }  }{ \cos ^{ 2 }{ x }  } dx } $$

$$\displaystyle =2\tan { x } -3\int { \frac { \sin { x }  }{ \cos ^{ 2 }{ x }  } dx } $$

Let $$\cos x=t\quad \Rightarrow \ -\sin x dx=dt$$

$$\displaystyle I=2\tan { x } +3\int { \frac { 1 }{ { t }^{ 2 } } dx } $$

$$=2\tan x-\dfrac {3}{t}+c\ \Rightarrow \ 2\tan x-\dfrac {3}{\cos x}+c=2\tan x-3\sec x+c$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate: $$\displaystyle \int x\log(1+x) dx$$
  • A. $$\dfrac{(2x^2 +2)\ln(x+1)-x^2 +2x}{4}+c$$
  • B. $$\dfrac{(2x^2 +2)\ln(x+1)-x^2 -2x}{2}+c$$
  • C. $$\dfrac{(2x^2 -2)\ln(x+1)-x^2 +4x}{2}+c$$
  • D. $$\dfrac{(2x^2 -2)\ln(x+1)-x^2 +2x}{4}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the following:
$$\displaystyle \int_{0}^{1} xlog (1 + 2x)dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Hard
$$\displaystyle\int a^{mx}b^{nx}\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 One Word Hard
If $$ I= 636\displaystyle \int_{0}^{\frac{\pi}4}\left ( \sqrt{\sin x}+\sqrt{\cos x} \right )^{-4}dx $$ then $$ I $$ equals

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$I=\displaystyle \int \dfrac{(x+a)^3}{x^3}dx $$ is equal to:
  • A. $$x^2+ 3a \log x -\dfrac{3a^2}{x} - \dfrac{a^3}{2x^2}+c$$
  • B. $$x^3+ 3a \log x -\dfrac{2a^2}{x} - \dfrac{3a^3}{2x^2}+c$$
  • C. $$1+ 2a \log x -\dfrac{2a^2}{x} - \dfrac{3a^2}{2x^2}+c$$
  • D. $$x+ 3a \log x -\dfrac{3a^2}{x} - \dfrac{a^3}{2x^2}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer