Mathematics

Evaluate $$\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$$


SOLUTION
Given, $$I=\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$$. 

Let $$x+2=t^{2}$$. Then , 

$$dx=2t dt$$

Also,
$$x=0\Rightarrow t^{2}=2\Rightarrow t=\sqrt{2}$$ and, $$x=2\Rightarrow t^{2}=4\Rightarrow t=2$$

$$\therefore I=\displaystyle\int_{\sqrt{2}}^{2}(t^{2}-2)\sqrt{t^{2}}2t \ dt$$

$$=2\displaystyle\int_{\sqrt{2}}^{2}(t^{4}-2t^{2})dt$$

$$=2\left[\dfrac{t^{5}}{5}-\dfrac{2t^{3}}{3}\right]_{\sqrt{2}}^{2}$$

$$\Rightarrow I=2\left[\left(\dfrac{32}{5}-\dfrac{16}{3}\right)-\left(\dfrac{4\sqrt{2}}{5}-\dfrac{4\sqrt{2}}{3}\right)\right]$$

$$=2\left(\dfrac{16}{15}+\dfrac{8\sqrt{2}}{15}\right)$$

$$=\dfrac{32+16\sqrt{2}}{15}$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\displaystyle I=\int \frac{dx}{\sqrt{\left ( 1-x \right )\left ( x-2 \right )}},$$ then $$I$$ is equal to
  • A. $$\displaystyle \sin^{-1}\left ( 2x+5 \right )+C$$
  • B. $$\displaystyle \sin^{-1}\left ( 3-2x \right )+C$$
  • C. $$\displaystyle \sin^{-1}\left ( 5-2x \right )+C$$
  • D. $$\displaystyle \sin^{-1}\left ( 2x-3 \right )+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
The value of $$\displaystyle\int { \cfrac { 2 }{ { \left( { e }^{ x }+{ e }^{ -x } \right)  }^{ 2 } }  } dx$$ is
  • A. $$-\cfrac { 1 }{ { e }^{ x }+{ e }^{ -x } } +C$$
  • B. $$\cfrac { -1 }{ { \left( { e }^{ x }+1 \right) }^{ 2 } } +C$$
  • C. $$\cfrac { 1 }{ { e }^{ x }-{ e }^{ -x } } +C\quad \quad $$
  • D. $$\cfrac { -{ e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } } +C\quad $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Solve : $$\displaystyle \int\limits_{-\pi/2}^{\pi/2} \sin^7x \ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Solve : $$\int { \dfrac { cos4\theta +1 }{ cot\theta -tan\theta  } d\theta  } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer