Mathematics

Evaluate $$\displaystyle\int_{0}^{2}(x+1)\ dx$$


SOLUTION
Consider, $$I=\displaystyle\int_{0}^{2}x+1\ dx$$

$$=\left[\dfrac {x^2}2 +x \right]_0^2$$

$$=2+2=4$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium

$$\displaystyle \int_{1}^{2}\frac{\mathrm{d}\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}=$$
  • A. $$\displaystyle \log_{\mathrm{e}}(\frac{\sqrt{2}+1}{2+\sqrt{5}})$$
  • B. $$\displaystyle \log_{\mathrm{e}}(\frac{2-\sqrt{5}}{\sqrt{2}-1})$$
  • C.
  • D. $$\displaystyle \log_{\mathrm{e}}(\frac{2+\sqrt{5}}{\sqrt{2}+1})$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Evaluate : $$\displaystyle \int \sqrt{\dfrac{a - x}{x}} dx$$
  • A. $$\dfrac{\sqrt{a-x}}{\sqrt{x}}+a\tan^{-1}\left(\dfrac{\sqrt{x}}{\sqrt{a-x}}\right)+c$$
  • B. $$\dfrac{\sqrt{a-x}}{\sqrt{x}}-a\tan^{-1}\left(\dfrac{\sqrt{x}}{\sqrt{a-x}}\right)+c$$
  • C. $$\sqrt{a-x} \sqrt{x}-a\tan^{-1}\left(\dfrac{\sqrt{x}}{\sqrt{a-x}}\right)+c$$
  • D. $$\sqrt{a-x} \sqrt{x}+a\tan^{-1}\left(\dfrac{\sqrt{x}}{\sqrt{a-x}}\right)+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int_1^{\sqrt 3}\frac {dx}{1+x^2}$$ equals
  • A. $$\dfrac {\pi}{3}$$
  • B. $$\dfrac {2\pi}{3}$$
  • C. $$\dfrac {\pi}{6}$$
  • D. $$\dfrac {\pi}{12}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Let $$a,\ b,\ c$$ be such that $$\displaystyle \frac{1}{(1-x)(1-2x)(1-3x)}=\frac{a}{1-x}+\frac{b}{1-2x}+\frac{c}{1-3x}$$ then $$\displaystyle \frac{a}{1}+\frac{b}{3}+\frac{c}{5}=$$
  • A. $$\displaystyle \frac{1}{6}$$
  • B. $$\displaystyle \frac{1}{5}$$
  • C. $$\displaystyle \frac{1}{3}$$
  • D. $$\displaystyle \frac{1}{15}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$ 4 \displaystyle \int \dfrac{\sqrt{a^6 + x^8}}{x} dx$$ is equal to ______________________.
  • A. $$a^6 ln\vert \dfrac {\sqrt{a^6 + x^8} - a^3} {\sqrt {a^6 + x^8} + a^3}\vert + c$$
  • B. $$\sqrt{a^6 + x^8} + \dfrac {a^3}{2} ln \vert \dfrac {\sqrt{a^6 + x^8} - a^3} {\sqrt {a^6 + x^8} + a^3}\vert + c$$
  • C. $$a^6 ln \vert \dfrac {\sqrt{a^6 + x^8} + a^3} {\sqrt {a^6 + x^8} - a^3}\vert + c$$
  • D. $$\sqrt{a^6 + x^8} + \dfrac{a^3}{2} ln \vert \dfrac {\sqrt{a^6 + x^8} + a^3} {\sqrt {a^6 + x^8} - a^3}\vert + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer