Mathematics

Evaluate $$\displaystyle\int_{0}^{2} 3x+2\ dx$$


SOLUTION
Consider,
$$I=\displaystyle\int_{0}^{2} 3x+2\ dx$$

$$=\left[ 3\dfrac{x^2}2+2x \right]_0^2$$

$$\Rightarrow$$$$6+4-0-0=10$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Evaluate $$\displaystyle\int{\frac{{(x+\sqrt{1+x^2})}^{15}}{\sqrt{1+x^2}}dx}$$.
  • A. $$\displaystyle\frac{{(x+\sqrt{1+x^2})}^{14}}{14}+C$$
  • B. $$\displaystyle\frac{{(x+\sqrt{1+x^2})}^{16}}{16}+C$$
  • C. $$\displaystyle\frac{{(x+\sqrt{1+x^2})}^{17}}{17}+C$$
  • D. $$\displaystyle\frac{{(x+\sqrt{1+x^2})}^{15}}{15}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$I = \int_0^1 {{e^{{x^2}}}dx \Rightarrow } $$
  • A. $$I \ge 0$$
  • B. $$I \le 0 \le e $$
  • C. $$ I > 4 $$
  • D. $$I \ge e$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
Solve: $$\displaystyle \int \dfrac{\sin 2x}{\sin \left(x - \dfrac{\pi}{4}\right) .\sin \left(x + \dfrac{\pi}{4}\right)} dx$$
  • A. $$\log\left |\sin^2 x + \dfrac{1}{2}\right|$$
  • B. $$\log\left |\sin x - \dfrac{1}{2}\right|$$
  • C. $$\log\left |\sin^2 x + \dfrac{1}{\sqrt{2}}\right|$$
  • D. $$\log\left |\sin^2 x - \dfrac{1}{2}\right|$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Integrate :-
 $$\displaystyle \int_{}^{} {\frac{{dx}}{{x\left( {x + 1} \right)}}} $$ 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Solve $$\displaystyle\int {\dfrac{x}{{\sqrt {4 - {x^2}} }}} dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer