Mathematics

# Evaluate; $\displaystyle\int _ { 0 } ^ { \pi/2 } \log \sin { 2 } x d x$

##### SOLUTION

$\\I=\int_{0}^{(\frac{\pi}{2})}log sin2x dx\\Let 2x=t\\2dx=dt\\\therefore dx=(\frac{1}{2})dt\\and x\rightarrow(\frac{\pi}{2}), t\rightarrow\pi\\x\rightarrow 0, t\rightarrow 0\\I=\int_{0}^{\pi}logsin(t)(\frac{1}{2})dt\\=(\frac{1}{2})\int_{0}^{\pi}logsin(\pi-t)dt\\=(\frac{1}{2})\int_{0}^{\pi}logsin(\pi-t)dt\\=(\frac{1}{2})\int_{0}^{\pi}logsin\>t\>dt\\=(\frac{1}{2})\times2\int_{0}^{(\frac{\pi}{2})}log\>sint\>dt\\=-(\frac{\pi}{2})log2(standard\>result)$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$\displaystyle\int^{\pi/2}_0\dfrac{\sin x\cos x}{(\cos^2x+3\cos x+2)}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate $\displaystyle \int_{0}^{a}[x^n]dx$ (where,[.] denotes the greatest integer function) is equal to

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of the integral $\underset{0}{\overset{\pi / 4}{\int}} \dfrac{\sin \, x + \cos \, x}{3 + \sin \, 2x} dx$, is
• A. $\log 2$
• B. $\log 3$
• C. $\dfrac{1}{8} \log \, 3$
• D. $\dfrac{1}{4} \log \, 3$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate: $\displaystyle \int_{1}^{4}e^{\sqrt{x}}dx$
• A. ${e}^{2}$
• B. $4{e}^{2}$
• C. $3{e}^{2}$
• D. $2{e}^{2}$

Given that for each $\displaystyle a \in (0, 1), \lim_{h \rightarrow 0^+} \int_h^{1-h} t^{-a} (1 -t)^{a-1}dt$ exists. Let this limit be $g(a)$
In addition, it is given that the function $g(a)$ is differentiable on $(0, 1)$