Mathematics

# Evaluate: $\displaystyle \int\limits_0^{\frac{\pi }{4}} {{{\cos }^{\frac{3}{2}}}\left( {2x} \right)\cos \left( x \right)dx}$

##### SOLUTION
$\int_0^{\frac{\pi}{4}}(\cos 2x)^{\frac{3}{2}}\cos x dx$
$\Rightarrow$  $\int_0^{\frac{\pi}{4}}(1-2\sin^2x)^{\frac{3}{2}}\cos x dx$
Let $\sqrt{2}\sin x=\sin t$
$\cos x dx=\dfrac{1}{\sqrt{2}}\cos tdt$

$\Rightarrow$  $\dfrac{1}{\sqrt{2}}\int_0^{\frac{\pi}{2}}\cos^4tdt$      ---- ( 1 )
Now, $\int \cos^4tdt$
$=\dfrac{1}{4}\int (2\cos^2t)dt$
$=\dfrac{1}{4}\int(1+\cos 2t)^2dt$
$=\dfrac{1}{4}\int[1+2\cos 2t+\cos^2 2t]dt$
$=\dfrac{1}{4}\left[t+\sin 2t+\dfrac{1}{2}\int(1+\cos 4t)dt\right]$
$=\dfrac{1}{4}\left[t+\sin 2t+\dfrac{1}{2}t+\dfrac{1}{8}\sin 4t\right]_0^{\frac{\pi}{2}}+c$
$=\dfrac{1}{4}\left[\dfrac{3}{2}t+\sin 2t+\dfrac{1}{8}\sin 4t\right]_0^{\frac{\pi}{2}}+c$         ---- ( 2 )
Substituting ( 2 ) in ( 1 )
$\Rightarrow$  $\dfrac{1}{4\sqrt{2}}\left[\dfrac{3}{2}t+\sin 2t+\dfrac{1}{8}\sin 4t\right]_0^{\frac{\pi}{2}}+c$

$\Rightarrow$  $\dfrac{1}{4\sqrt{2}}\left[\left(\dfrac{3}{2}.\dfrac{\pi}{2}-0\right)+(0-0)+\dfrac{1}{8}(0-0)\right]$

$\Rightarrow$  $\dfrac{3\pi}{16\sqrt{2}}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Integrate the function    $\cfrac {x+2}{\sqrt {4x-x^2}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The general solution of the equation $\dfrac{dy}{dx} = \dfrac{y}{x + \sqrt{xy}}$ is
• A. $\sqrt{x} = \sqrt{y}(log \sqrt{y} + c)$
• B. $x = \sqrt{y}(log \sqrt{y} + c)$
• C. $x = \sqrt{y}(log \,y + c)$
• D. $\sqrt{x} = \dfrac {1}{2} \sqrt{y}(log \,y + c)$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
Let $f\left ( x \right )= max\left \{ \log \left ( 1+x^{2} \right ),1 \right \}$ for $0\leq x\leq 2$,
then $\displaystyle \int_{0}^{2}f\left ( x \right )\: dx$ equals?
• A. $\log \left ( 5/e \right )$
• B. $\log \left ( 3/e \right )$
• C. $\tan ^{-1}\sqrt{e}$
• D. None of the above

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int \dfrac {4x^{5} - 7x^{4} + 8x^{3} - 2x^{2} + 4x - 7}{x^{2}(x^{2} + 1)^{2}} dx$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020