Mathematics

# Evaluate: $\displaystyle \int x^2+3x+5\ dx$

##### SOLUTION

$I=\displaystyle \int x^2+3x+5\ dx$

$I=\displaystyle \int x^2 dx+\int 3x dx+\int 5 dx$

$I=\dfrac {x^3}{3}+\dfrac {3x^2}{2}+5x+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
What is $\displaystyle \int_0^1 {\frac{\tan^{-1}x}{1 + x^2} dx}$ equal to ?
• A. $\dfrac{\pi}{4}$
• B. $\dfrac{\pi}{8}$
• C. $\dfrac{\pi^2}{8}$
• D. $\dfrac{\pi^2}{32}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the definite integral   $\displaystyle \int_0^1\frac {dx}{\sqrt {1+x}-\sqrt x}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Multiple Correct Medium
The value of $\displaystyle \int_{0}^{1} \dfrac{2 x^{2}+3 x+3}{(x+1)\left(x^{2}+2 x+2\right)} d x$ is
• A. $\dfrac{\pi}{4}+2 \log 2-\tan ^{-1} \dfrac{1}{3}$
• B. $\dfrac{\pi}{4}+2 \log 2-\tan ^{-1} 2$
• C. $2 \log 2-\cot ^{-1} 3$
• D. $-\dfrac{\pi}{4}+\log 4+\cot ^{-1} 2$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Integrate the function:  $\cfrac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$