Mathematics

# Evaluate : $\displaystyle \int \sqrt{\dfrac{a - x}{x}} dx$

##### ANSWER

$\sqrt{a-x} \sqrt{x}+a\tan^{-1}\left(\dfrac{\sqrt{x}}{\sqrt{a-x}}\right)+c$

Its FREE, you're just one step away

Create your Digital Resume For FREE on your name's sub domain "yourname.wcard.io". Register Here!

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 124

#### Realted Questions

Q1 Single Correct Medium
Let $f(x)=\displaystyle \frac{1}{3}\cot^{3}x-\cot x+\int\cot^{4}xdx$ and $f(\displaystyle \frac{\pi}{2})=\frac{\pi}{2}$ , then $f(x) =$
• A. $\pi-x$
• B. $x-\pi$
• C. $\dfrac{\pi}{2}-x$
• D. $x$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate:
$\displaystyle\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^5 x\ dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium

$\int frac{2^x + 3^x}{5^x} dx equals- • A. (b)$lo{g_e}(2x/5) + lo{g_e}(3x/5) + C$• B. (c)$x + C$• C. None of these • D. (a)$\frac{(2/5)^x}{log_e 2/5} + \frac{(3/5)^x}{log_e 3/5} $Asked in: Mathematics - Integrals 1 Verified Answer | Published on 17th 09, 2020 Q4 Single Correct Medium$\displaystyle\int { \dfrac { { x }^{ n-1 } }{ { x }^{ 2n }+{ a }^{ 2 } } dx } $is equal to • A.$\dfrac { 1 }{ na } \tan ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$• B.$\dfrac { n }{ a } \sin ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$• C.$\dfrac { n }{ a } \cos ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$• D.$\dfrac { 1 }{ na } \cot ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$• E.$\dfrac { n }{ a } \tan ^{ -1 }{ \left( \dfrac { { x }^{ n } }{ a } \right) } +C$Asked in: Mathematics - Integrals 1 Verified Answer | Published on 17th 09, 2020 Q5 Passage Medium Consider two differentiable functions$f(x), g(x)$satisfying$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$&$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where$\displaystyle f(x)>0    \forall  x \in  R

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020